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Abstract

English

This dissertation relates to the applications of a one-dimensional mathematical
model for multispecies biofilm formation and growth. The model consists of a
system of nonlinear hyperbolic partial differential equations, describing the
growth of microbial species in biofilms, and a system of semilinear parabolic
partial differential equations, which governs substrate diffusion from the
surrounding aqueous phase into the biofilm. Overall, this leads to a free boundary
value problem, essentially hyperbolic.

In a first study, the analysis and simulations of the attachment phenomena in
the initial phase of biofilm growth have been addressed. The resulting
mathematical problem has been discussed by using the method of characteristics
and the fixed-point theorem has been used to obtain existence, uniqueness and
properties of solutions.

A second aspect of the thesis deals with the analysis and prediction of
population dynamics in multispecies biofilms for wastewater treatment. The
model has been applied to simulate the bacterial competition and to evaluate the
influence of substrate diffusion on microbial stratification for a nitrifying
multispecies biofilm including Anammox bacteria and a sulfate-reducing biofilm.
In both cases, specific kinetics equations have been introduced to describe
biomass growth and substrate consumption. The method of characteristics has
been used for numerical purposes and the mass conservation equation plays a
crucial role in checking the accuracy of simulations. The simulation results reveal
that the model is able to evaluate properly the effects that boundary conditions
exert on bacterial competition.

Finally, the biofilm model has been extended to include the colonization
phenomenon. The new model is able to take into account the invasion of new
species diffusing from bulk liquid to biofilm, still based on a set of nonlinear
hyperbolic partial differential equations for what concerns the growth process.
Indeed, the biological invasion process of new species into the biofilm has been
modeled by a system of nonlinear parabolic partial differential equations. The
invasion model has been successfully applied to simulate the invasion of
heterotrophic bacteria in a constituted autotrophic biofilm and viceversa.
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Italian

Il presente lavoro di ricerca riguarda le applicazioni di un modello
monodimensionale relativo alla formazione e crescita di biofilm multispecie. Il
modello in esame consiste in un sistema di equazioni differenziali a derivate
parziali di tipo iperbolico, che descrive la crescita delle diverse specie microbiche
all’interno del biofilm, ed un sistema di equazioni differenziali a derivate parziali
paraboliche semilineari, che governa la diffusione dei substrati dalla fase acquosa
all’interno del biofilm. Nel complesso, ciò comporta la formulazione di un
problema a frontiera libera, essenzialmente iperbolico.

In un primo studio, sono state condotte analisi e simulazioni riguardo la fase
iniziale di crescita del biofilm. Il problema matematico che ne deriva è stato
discusso utilizzando il metodo delle caratteristiche ed il teorema del punto fisso è
stato utilizzato per ottenere esistenza, unicità e proprietà delle soluzioni.

Un secondo aspetto della tesi riguarda l’analisi e predizione delle dinamiche
di popolazione di biofilm multispecie applicati al trattamento delle acque. Il
modello è stato applicato al caso di un biofilm nitrificante contente batteri
Anammox ed un biofilm solfato-riduttore, al fine di simulare la competizione
batterica e valutare l’influenza che la diffusione dei substrati esercita sulla
stratificazione microbica. In entrambi i casi, specifiche equazioni cinetiche sono
state introdotte per descrivere la crescita della biomassa e il consumo dei substrati.
Il metodo delle caratteristiche è stato utilizzato per scopi numerici e l’equazione
di conservazione della massa ha giocato un ruolo fondamentale nella valutazione
dell’accuratezza delle soluzioni. I risultati delle simulazioni rivelano che il
modello è in grado di valutare correttamente gli effetti che le condizioni al
contorno esercitano sulla competizione microbica.

Infine, il modello sul biofilm è stato esteso al fine di includere il fenomeno di
colonizzazione. Il nuovo modello è in grado di trattare l’invasione di nuove specie
che diffondono dal bulk liquido verso il biofilm pur basandosi su un set di
equazioni differenziali a derivate parziali di tipo iperbolico per quanto riguarda il
processo di crescita microbica. In effetti, il processo di invasione di nuove specie
all’interno del biofilm è stato modellato tramite un sistema di equazioni
differenziali a derivate parziali paraboliche non lineari. Il modello sull’invasione è
stato applicato con successo alla simulazione dell’invasione eterotrofa in un
biofilm autotrofo già costituito e viceversa.

French

Cette thèse s’intèresse à l’application d’un modèle mathématique unidimensionnel
de formation et de croissance de biofilms multi-espèces. Le modèle se compose
d’un système d’équations non linéaires aux dérivées partielles hyperboliques,
décrivant la croissance d’espèces microbiennes dans le biofilm, et un système
d’équations semi-linéaires aux dérivées partielles paraboliques, qui régit la
diffusion de substrat de la phase aqueuse vers la matrice du biofilm. L’ensemble
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conduit à un problème de valeur limite libre, essentiellement hyperbolique.
Dans une première étude, l’analyse et la simulation de la phase initiale de

croissance du biofilm ont été examinées. Le problème mathématique résultant a
été discuté en utilisant la méthode des caractéristiques et le théorème du point fixe
a été utilisé pour déterminer l’existence et l’unicitè des solutions mathématiques.

Un deuxième aspect de la thèse porte sur l’analyse et la prévision de la
dynamique des populations microbienne dans plusieurs types biofilms pour le
traitement des eaux usées. Le modèle a été appliqué pour simuler la compétition
bactérienne et évaluer l’influence de la diffusion du substrat sur la stratification
microbienne des biofilms multi-espèces, en incluant les bactéries nitrifiantes,
Anammox et bactéries sulfato-réductrices. Dans les deux cas, des spécifiques
équations de cinétique ont été introduites pour décrire la croissance de la
biomasse et la consommation du substrat. La méthode des caractéristiques a été
utilisée à des fins numériques et l’équation de conservation de masse joue un rôle
crucial pour vérifier l’exactitude des simulations. Les résultats des simulations
montrent que le modèle est en mesure d’évaluer correctement les effets des
conditions limites qui s’exercent sur la concurrence bactérienne.

Enfin, ce modèle a été étendu pour inclure le phénomène de colonisation
microbienne. Le nouveau modèle est capable de prendre en compte l’invasion de
nouvelles espèces en se basant sur un ensemble d’équations non linéaires aux
dérivées partielles hyperboliques pour ce qui concerne le processus de croissance.
De plus, le processus d’invasion biologique d’espèces nouvelles dans le biofilm a
été modélisé par un système d’équations non linéaires aux dérivées partielles
paraboliques. Ce modèle d’invasion a été appliqué avec succès pour simuler
l’invasion des bactéries hétérotrophes dans les biofilms autotrophes.

Dutch

Dit proefschrift beschrijft de applicaties van een één-dimensionaal wiskundig
model voor de vorming en groei van multi-species biofilms. Het model bestaat uit
een systeem van niet-lineaire hyperbole partiële differentiaal vergelijkingen,
welke de groei van microorganismen in biofilmen beschrijft, en een systeem van
semi-lineaire parabool partiële differentiaal vergelijkingen, welke de substraat
diffusie van de omliggende waterige fase naar de biofilm beschrijft. Samen leidt
dit tot een vrij randvoorwaarden probleem, in essentie hyperbolisch.

Een eerste studie behandelde de analyse en simulatie van hechtingsfenomenen
gedurende de initiële biofilmvorming. Het resulterende mathematisch probleem
werd besproken aan de hand van de methode van karakteristieken en het vaste-
punt theorema is gebruikt om het bestaan, de uniekheid en de eigenschappen van
de oplossing aan te tonen.

Het tweede deel van deze thesis behandelt de analyse en voorspelling van
populatie dynamica van multi-species biofilmen voor afvalwaterzuivering. Het
model is toegepast om de bacteriële competitie te simuleren en de invloed van
substraat diffusie op microbiële laagvorming voor een nitrificerende multi-species
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biofilm, inclusief Anammox bacteriën en een sulfaat reducerende biofilm. In
beide gevallen werden specifieke kinetische vergelijkingen gebruikt om de groei
van biomassa en het substraatverbruik te beschrijven. De methode van
karakteristieken is gebruikt voor numerieke doeleinden en de wet van behoud van
massa behoud speelt een belangrijke rol in het checken van de nauwkeurigheid
van de simulaties. De simulaties laten zien dat het model in staat is om de effecten
die de randvoorwaarden uitoefenen op de bacteriële competitie te evalueren.

Ten slotte is het biofilm model uitgebreid om kolonisatie fenomenen te
berekenen. Het nieuwe model is in staat om rekening te houden met de invasie
van een nieuw species diffunderend van de bulk oplossing naar de biofilm, nog
steeds gebaseerd op een set van niet-lineaire hyperbool partiële differentiaal
vergelijkingen voor het groeiproces. Inderdaad, het biologische invasie proces van
een nieuw species naar de biofilm is gemodeleerd door een systeem van
niet-lineaire parabolische partiëel differentiaal vergelijkingen. Het invasie model
is succesvol toegepast om de invasie van heterotrofe bacteriën in een autotrofe
biofilm en vice versa te simuleren.



Acknowledgments

I would like to express my deep and sincere gratitude to all the wonderful people I
met during these three years as a PhD student. Despite all the challenges and
sleepless nights, this worthwhile experience really changed my life and made me
growth both personally and scientifically. First of all, I would like to thank the
Erasmus Mundus Joint Program ETeCoS3 (Environmental Technologies for
Contaminated Solids, Soils and Sediments) committee for giving me the
opportunity of being part of this stimulating research program. I specially thank
my promotor Prof. Giovanni Esposito and co-promotor Prof. Berardino D’Acunto
for all their help and guidance along the way. With their constant encouragement
they helped me overcoming the difficulties and taught me how to be open minded
and always critically solve the problems. I would also like to thank my supervisor
Prof. Francesco Pirozzi for his precious collaboration; his comments and
suggestions have always driven me to do more and better. Special thanks go to Dr.
Luigi Frunzo for being my main collaborator during these years: his endless
support and our long discussions have been crucial for my work. Thank you very
much for let me always feel part of the "modeling group"! During my doctorate, I
had the great opportunity of visiting the Center for Biofilm Engineering
(Montana, USA) where I had the pleasure of working with Prof. Robin Gerlach
and his research team, who have created a friendly work environment making my
stay in USA wonderful. I feel the need of thanking him for all he taught me about
biofilms and for being such a supportive and inspiring person. Special thanks go
also to Dr. Yoan Pechaud for his valuable advices, competent comments and
helpfulness he had during my stay at University Paris-Est (France). Thank you to
all the colleagues and friends in Naples, Bozeman and Paris with whom I shared
this period of my life. You guys made these years unforgettable! Finally, I am
particularly grateful to my family and my boyfriend who have been a constant
source of support, love and encouragement.

v



vi



Contents

1 Introduction 1
1.1 Research context . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Biofilm definition . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Harmful and beneficial biofilms . . . . . . . . . . . . . . 2
1.1.3 Biofilm development . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Main processes involved in biofilm systems . . . . . . . . 3
1.1.5 Biofilm modeling . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Continuum and discrete approach in modeling biofilm development
and structure: a review 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Continuum models . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 One dimensional continuum models - Pioneer works . . . 11
2.2.2 One dimensional continuum models . . . . . . . . . . . . 12
2.2.3 Multidimensional continuum models . . . . . . . . . . . 19

2.3 Discrete Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Cellular Automaton Models . . . . . . . . . . . . . . . . 27
2.3.2 Hybrid differential-discrete cellular automaton models . . 29
2.3.3 Individual Based Models . . . . . . . . . . . . . . . . . . 35

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 When to use 1D, 2D or 3D models? . . . . . . . . . . . . 40
2.4.2 Should continuum or discrete approach be used? . . . . . 41

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Analysis and simulations of the initial phase in multispecies biofilm
formation 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Initial phase of biofilm formation . . . . . . . . . . . . . . . . . . 47

3.2.1 Free boundary value problem . . . . . . . . . . . . . . . 48
3.3 Characteristic-like method . . . . . . . . . . . . . . . . . . . . . 49
3.4 Free boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Special problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



viii

3.6 Effect of substrates . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . 61

4 Mathematical modeling of competition and coexistence of
sulfate-reducing bacteria, acetogens and methanogens in multispecies
biofilms 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . 70
4.3 The mathematical model . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Modelling microbial population dynamics in multispecies biofilms
including Anammox bacteria 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Biological problem . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Model construction and numerical approach . . . . . . . . . . . . 86
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.4 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Modelling multispecies biofilms including new bacterial species
invasion 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Invasion model . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Equations for biofilms . . . . . . . . . . . . . . . . . . . 112
6.2.2 Equations for substrates . . . . . . . . . . . . . . . . . . 114
6.2.3 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Qualitative properties of solutions . . . . . . . . . . . . . . . . . 115
6.4 Numerical solutions and applications . . . . . . . . . . . . . . . . 116

6.4.1 Simulation Set 1: Heterotrophic colonization . . . . . . . 118
6.4.2 Simulation Set 2: Autotrophic colonization . . . . . . . . 121

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusion and Future Work 123
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 129



List of Figures

2.1 Schematic representation of biofilm model classification adopted
in this review and based on biomass representation and
dimensionality: a) 1D continuum models; b) multidimensional
continuum models; c) Cellular Automata; d) Individual based
Models (for multidimensional models only the 2D representation
has been reported). . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Spreading mechanism adopted in [23] and [58] (figure adapted
from [61]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 2D continuum models: a) spreading mechanism adopted by Eberl
et al. [3]; b) spreading mechanism adopted by Dockery and
Klapper [33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Schematic representation of the spreading rules adopted by a)
Picioreanu et al. [104,105]; b) Laspidou and Rittmann [117,118].
Figure adapted from [96,108]. . . . . . . . . . . . . . . . . . . . 33

2.5 Spreading mechanisms adopted by: a), c) Xavier et al. [131]; b)
Lardon et al. [141]. Figure adapted from these two papers. . . . . 38

3.1 Characteristic-like lines . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Effect of attachment rate (σ) on the volumetric fraction of the

bacterial species in biofilm. A: σ = 5 mmd−1; B: σ = 1 mmd−1;
C: σ = 0.5 mmd−1. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Effect of attachment rate (σ) on the substrate trends in biofilm. A:
σ = 5 mmd−1; B: σ = 1 mmd−1; C: σ = 0.5 mmd−1. . . . . . . 64

4.1 Main pathways of the biological process. . . . . . . . . . . . . . 71
4.2 Substrate trends in the biofilm (A) and bacterial volumetric

fractions (B) in the biofilm for a COD/SO42− ratio = 0.5.
Dotted line: sulfate concentration; dashdot line: COD; continuous
line: acetate concentration. . . . . . . . . . . . . . . . . . . . . . 77

4.3 Substrate trends in the biofilm (A) and bacterial volumetric
fractions (B) in the biofilm for a COD/SO2−

4 ratio = 1.5. Dotted
line: sulfate concentration; dashdot line: COD; continuous line:
acetate concentration. . . . . . . . . . . . . . . . . . . . . . . . 77

ix



x

4.4 Substrate trends in the biofilm (A) and bacterial volumetric
fractions (B) in the biofilm for a COD/SO2−

4 ratio = 2. Dotted
line: sulfate concentration; dashdot line: COD; continuous line:
acetate concentration. . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Main microbial interactions of the simulated biological process . . 87
5.2 Effects of applied DO (3 mg/L) on bacterial population distribution

(left) and substrate concentration trends (right) within biofilm after
10 (A,B), 50 (C,D), 100 (E,F), 150 (G,H) days time simulation. . . 94

5.3 Effects of applied DO (3 mg/L) on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after
200 (I,L), 250 (M,N), 300 (O,P) days time simulation. . . . . . . . 95

5.4 Effects of applied DO (5 mg/L) on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after
10 (A,B), 50 (C,D), 100 (E,F), 150 (G,H) days time simulation. . . 97

5.5 Effects of applied DO (5 mg/L) on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after
200 (I,L), 250 (M,N), 300 (O,P) days time simulation. . . . . . . . 98

5.6 Effects of a DO change from 3 mg/L (maintained over 100 days)
to 5 mg/L on bacterial population distribution (left) and substrate
concentration trends (right) within biofilm after 10 (A,B), 50
(C,D), 100 (E,F), 150 (G,H) days time simulation. . . . . . . . . . 99

5.7 Effects of a DO change from 3 mg/L (maintained over 100 days)
to 5 mg/L on bacterial population distribution (left) and substrate
concentration trends (right) within biofilm after 200 (I,L), 250
(M,N), 300 (O,P) days time simulation. . . . . . . . . . . . . . . 100

5.8 Effects of a change in applied shear stress constant from
50m−1d−1 (maintained over 100 days) to 150m−1d−1 on
bacterial population distribution (left) and substrate concentration
trends (right) within biofilm after 10 (A,B), 50 (C,D), 100 (E,F),
150 (G,H) days time simulation. . . . . . . . . . . . . . . . . . . 101

5.9 Effects of a change in applied shear stress constant from
50m−1d−1 (maintained over 100 days) to 150m−1d−1 on
bacterial population distribution (left) and substrate concentration
trends (right) within biofilm after 200 (I,L), 250 (M,N), 300 (O,P)
days time simulation. . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Effect of heterotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ1 profile within biofilm after
1 (A1,A2,A3) , 2 (B1,B2,B3) , 3 (C1,C2,C3), 5 (D1,D2,D3) days. 118

6.2 Effect of heterotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ1 profile within biofilm after
7.5 (E1,E2,E3) , 10 (F1,F2,F3) , 20 (G1,G2,G3), 30 (H1,H2,H3)
days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



 xi

6.3 Effect of autotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ2 profile within biofilm after
1 (A1,A2,A3) , 2 (B1,B2,B3) , 3 (C1,C2,C3), 5 (D1,D2,D3) days. 120

6.4 Effect of autotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ2 profile within biofilm after
7.5 (E1,E2,E3) , 10 (F1,F2,F3) , 20 (G1,G2,G3), 30 (H1,H2,H3)
days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



xii



List of Tables

3.1 Stoichiometry and rate laws for microbial processes. HG =
heterotroph growth; AG = autotroph growth; HER = heterotroph
endogenous respiration; AER = autotroph endogenous respiration;
HD = heterotroph decay; AG = autotroph decay. . . . . . . . . . . 62

3.2 Operational parameters used for model simulations. . . . . . . . . 62

4.2 Operational parameters used for model simulation . . . . . . . . . 75
4.1 Petersen Matrix of the proposed model . . . . . . . . . . . . . . . 76
4.3 Kinetic, stoichiometric and diffusion coefficients used in the model 80

5.1 Kinetic and Stoichiometric Parameters used for Numerical
Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Peterson matrix of the proposed model . . . . . . . . . . . . . . . 107
5.3 Overview of the different modeling scenarios executed in this study 108

6.1 Operational parameters used for model simulations . . . . . . . . 117

xiii



xiv



Chapter 1

Introduction

1.1 Research context

Biofilm heterogeneity and complex functioning offer research perspectives in
different fields. Biofilms have been successfully appplied to wastewater treatment
thanks to their ability to remove unwanted compounds from wastewater. Their
structure and activities have been investigated using a broad variety of
microscopic, physico-chemical and molecular biological techniques. Parallel to
these investigations more and more complex mathematical models and
simulations have been developed to describe the growth, structures and
interactions of biofilms [1].

The analysis and modeling of a biofilm system are a scientific challenge and
require in many cases interdisciplinary cooperation. Mathematical modeling of
biofilm systems and in particular of their application to wastewater treatment is a
widely accepted tool to improve the understanding of the fundamental mechanisms
regulating biofilm formation and performance, to formulate and validate hypothesis
and operating strategies, to predict system’s behavior under different conditions
without the cost, time, and risk of building an experimental prototype [2].

The main elements of biofilm literature, mostly related to this study are briefly
presented in the following sections.

1.1.1 Biofilm definition

Biofilms are a form of microbial ecosystems constituted by accumulations of
microorganisms, irreversibly associated to a solid surface or phase interphase and
embedded in a self-produced primarily polysaccharide matrix [3]. This matrix
protects the cells against mechanical washout, facilitates communication among
them through biochemical signals and offers resistance to antimicrobials and
biocides.

Bacteria living in a biofilm are not randomly distributed but they live in
distinct niches. They benefit from interspecies cooperation [4] and show more
resistance to toxic substances such as antibiotics, chlorine and detergents thanks

1
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to diffusion barriers [5]. Based on a mechanistic hypothesis, the spatial
organization of the microorganisms in biofilms can be seen as the result of
differences in local substrate availability. Neverthless, recent studies have shown
that bacterial signaling and other interactions of that type, such as the gene
expression, often affect the regulatory activities in the cells resulting in
coordinated performances and in the regulation of the organization of microbial
communities [6, 7]. Therefore, biofilms are not just simple aggregations of selfish
individuals in competition for the nutrients they need, neither barely multicellular
organisms governed by hormone-based communication control: they rather act as
highly differentiated and multicultural communities similar to our own cities
[8, 9]. Nearly all biofilms communities in nature comprise a variety of
microorganisms embedded in a exopolymeric matrix and functioning as a
cooperative consortium, in a relatively complex and coordinate manner [8].

1.1.2 Harmful and beneficial biofilms

The importance and attractiveness of biofilm systems is undisputed. They are
found in extremely varied environments, ranging from water distribution systems
and wastewater treatment plants to stream beds, ship hulls, and teeth surfaces
[10]. Biofilms play both beneficial and detrimental roles in their environment
depending on whether their formation is controlled or unintentional [11]. By
corroding pipes, reducing heat transfer, contaminating drinking water or infecting
medical implants, biofilms can affect production quality or constitute a risk for
human health [12]. Conversely, an extensive use of biofilms is made within the
field of environmental biotechnology, i.e. self-purification of water, groundwater
protection, soil remediation and pollution treatment. Biofilms have been widely
used to treat wastewaters in attached growth systems since the end of the 19th
century.

Attached and suspended growth systems are based on the same biological
metabolic processes to remove carbon and nutrients from wastewater, but there
are some inherent differences that provide several advantages and some
challenges to the application of biofilm-based processes. The suspended growth
systems are characterized by the presence of biological flocs which are removed
by gravity settling and whose shape makes dissolved substrates available to all of
the cells. However, suspended flocs forming biomasses are often washed out from
the system and hence they experience low microbial diversity function [13]. In
attached growth systems, the treatment process can be operated at higher biomass
concentration in the reactor, with no need of settlers which are used in biomass
retention and recirculation.

The transport of dissolved substrates is generally governed by diffusion and
usually results in a concentration gradient within the aggregate, which favours in
turns the formation of a growth rate gradient [14]. Environmental micro-niches
created by diffusion-reaction interactions allow diverse bacterial species to cohabit
the same biofilm. Bacterial cells easily adapt to the local surroundings and respond
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to the concentration gradients, which often results in a stratification where different
species occupy specific layers in the biofilm. As a result, biofilms can exhibit
various environmental and kinetic characteristics and such diversified microbial
activities can be beneficially exploited for treating contemporarily multiple water
pollutants. In this case, the overall reactor performance may be closely linked to
microscale interactions within the biofilm [15] as the efficiency and robustness of
a wastewater treatment plant mainly depend on the composition and activity of its
microbial community [16].

1.1.3 Biofilm development

Biofilm formation is a multi-stage process resulting from the balance of several
physical (substrate transport), chemical and biological factors (growth yields and
substrate conversion rates), and constituted by several stages: adhesion to biofilm
support, formation of an attached monolayer and cell proliferation (microcolonies),
development of a mature biofilm and lastly dispersion.

The formation of bacterial biofilms starts when a small number of bacteria
adhere to a surface. The attachment to the surface can be classified in reversible
and irreversible since the initial bound established by the cells with the surface is
often weak and bacteria need active mechanisms to reach a more stable
association with the surface. The irreversible attachment is characterized by the
production of a polysaccharide matrix, which facilitates the bacteria adhesion to
the surface. Once attached to the surface, bacteria proliferate, differentiate and
form microcolonies which represent the biofilm basic structural units. They are
discrete matrix-enclosed communities of bacterial cells that may include cells of
one or of many species and their formation depends on clonal growth of attached
cells or on active translocation of cells across the surface. Micro colonies grow in
size and coalesce to form macro colonies, in many cases constituted by
mushroom-like towers separated by fluid-filled voids. This is the point at which
the biofilm reaches its maturation, developing a complex three-dimensional
dynamic structure, and bacteria profoundly differ from their planktonic state
relatively to the number of proteins expressed. At the final stage of biofilm
development, macro colonies may be eroded releasing cells from the biofilm into
the surrounding medium. Conversely, detachment can be initiated internally
leading to the dispersion of individual cells or large clumps. The revert of
dispersed biofilm cells to the planktonic state completes this idealistic
development cycle [17, 18].

1.1.4 Main processes involved in biofilm systems

Biofilms are both complex ecological and mechanical systems, in which different
kinds of processes interact. Biofilm development is determined by "positive"
processes (i.e. cell attachment, cell division, and polymer production) which lead
to biofilm volume expansion, and "negative" processes, (i.e. cell detachment and
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cell death) which contribute to biofilm shrinking [19].
Initial attachment of bacterial cells is affected by several factors, including

mass transport, surface conditioning, hydrophobicity, surface charge and
roughness. Surface colonization is usually performed by some bacterial species
which exhibit better capability to attach to the substratum. The attachment and
prolification of these bacteria provide conditions that allow additional species to
form mixed biofilm. Recent advances in microbial ecology have identified
motility as one of the main mediator of multispecies biofilm formation. In
particular, it can determine biofilm landscape and contribute to rapid alterations in
biofilm populations [20]. Motile bacteria generally have flagella that rotate to
propel them and represent one of the features distinguishing the microbes’
planktonic form from the sessile lifestyle. The production of flagella and of
extracellular matrix seems to be mutually exclusive processes: bacteria give up
the ability to move in order to settle down [21]. Indeed, once a motile bacteria,
supplied by the liquid planktonic phase, has successfully infiltrated the biofilm
matrix, it can invade a resident community and establish where the environmental
conditions are optimal for its growth.

The main biofilm expansion is due to bacterial growth and to extracellular
polymer production. The soluble substrates necessary for bacterial growth are
dissolved in the liquid flow and to reach the cells, first they pass through a
boundary layer (external mass transfer resistance) and then through the biofilm
matrix (internal mass transfer resistance) [19].

The transport of nutrients into and through the biofilm matrix is mainly
governed by diffusion, although the presence of a porous structure allows
advection even within the aggregate. Substrate diffusivity inside the biofilm is less
than that in water because of the minimal permeability of biofilm aggregate. In
addition, substrate diffusivity has been found to decrease with biofilm depth as a
consequence of an increasing density, decreasing porosity, and decreasing
permeability with depth [22]. Besides, the boundary layer is constituted by a thin
liquid layer, characterized by a negligible flow over the biofilm/liquid interface.
Its thickness mostly depends on the biofilm surface and on the flow regime. The
external fluid flow regulates biofilm growth by establishing the concentration of
substrates and products at the liquid-solid interface. At the same time the fluid
flow shears the biofilm surface eroding the protuberances.

Then, biofilm structure results from the interplay of different interactions, such
as mass transfer, conversion rates and detachment forces. An accurate modeling of
such a system has to take all of these factors into account.

1.1.5 Biofilm modeling

Biofilm models are considered an active research field, a scientific development
which is continuously evolving according to the modern studies in microbiology
and with the increasing achievements in their possible applications. According to
the IWA Task Group on Biofilm Modelling [2], existing models have undergone a
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chronological evolution and can be classified in three main groups:

- first generation models, which are based on the simplifying assumptions of
steady-state biofilm, uniform distribution of biomass, simplest possible
geometry and single limiting substrate. They were aimed at connecting the
basic processes occurring in a steady-state biofilm, that is, mass transport
from the bulk liquid, biodegradation within the biofilm, biofilm growth and
decay;

- second generation models, which have been introduced in 1980s and
include microbial interactions and non-uniform distribution of biomass still
assuming one-dimensional mass transport (by diffusion) and biofilm
geometry;

- third generation models, which have been developed since 1990s and are
based on the idea that some biofilms are characterized by complex and
heterogeneous structures that cannot be captured by pioneers models which
are based on the assumption of uniform and homogeneous structures. They
are aimed at describing spatial non-uniformities that characterize biofilm
shape.

Biofilm models can also be categorized in one-dimensional or
multidimensional, dynamic or steady-state, single or multispecies etc. More
information on the different modeling approaches present in literature, are
provided in Chapter 2.

One-dimensional biofilm models have been recognized as sufficiently
accurate tools to predict and evaluate biofilm reactor performance. They often
allow for mathematical analysis even if they may lack in proper description of
biofilm structure and heterogeneity [22]. Conversely, multidimensional models
are characterized by a high level of complexity and require in many cases a
demanding numerical treatment and large computing power. A variety of
(one-dimensional biofilm) modeling approaches exist in literature. In general,
when applied to the case of biofilm reactors, they are able to provide as outputs
the following items: biofilm composition in terms of relative mass proportion due
to microbial competition and spatial profiles of any number of particulate
components in the biofilm; concentration of the particulate components in the
bulk liquid with respect to impact on system performance and sludge production;
spatial profiles of any number of dissolved components in the biofilm; removal
rates and effluent concentrations of the dissolved components; biofilm
development in terms of thickness; in some cases spatial and dynamic profiles of
porosity (consolidation phenomena).

To date, the one-dimensional biofilm model introduced by Wanner and Gujer
in 1986 [23] has been implemented in its original and modified versions in several
software packages, which have been widely used by engineers for biofilm process
design and verification purposes. Such a model model treats biomass as a
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continuum, is based on the assumption of incompressibility for biofilm matrix and
simulates biofilm growth as a convective transport mechanism and substrate
transport as a diffusive mechanism. Despite the one dimensionality of the model,
ecological aspects of biofilms, such as spatio-temporal population and substrate
dynamics, are described relatively in details [24]. However, as most of
one-dimensional models, the Wanner-Gujer model includes some elements of
uncertainty, mostly related to the fate of particulate (i.e. transport to the biofilm
surface, attachment/entrapment, movement inside the biofilm, and hydrolysis and
subsequent degradation of particulate substrates), the dynamics and rate of biofilm
detachment, external mass transfer boundary layer thickness, and lack of clear and
transparent biofilm model calibration protocol [25]. In addition, the equations
constituting the model result in a complex mixed nonlinear hyperbolic-parabolic
free boundary value problem, hard to treat with rigorous analytical techniques.
Actually, only few studies have addressed the qualitative analysis of the system
[24, 26, 27, 28, 29, 30].

1.2 Scope of the thesis

The overall objective of this dissertation was to study qualitatively and
numerically a one-dimensional multispecies multisubstrate biofilm model applied
to wastewater treatment and propose a new approach to evaluate the invasion of
new species into a constituted biofilm. In particular, the objectives of this study
include: 1) qualitative analysis of the free boundary value problem governing the
initial phase of biofilm growth; 2) development of numerical simulations to
illustrate the model in the case of wastewater treatment and to evaluate
interactions within multispecies biofilms; 3) development of an invasion model,
able to take into account the colonization phenomenon and providing insights on
the movement of particulate components inside the biofilm. The fulfillment of the
research objectives pursued in this thesis is described in the following chapters.
An extensive literature review of the existing biofilm models is provided in
Chapter 2. General guidelines for the selection of the most suitable modeling
approach are discussed. A mathematical model based on a continuum approach
and able to describe the attachment process during the initial phase of biofilm
growth is presented and analyzed qualitatively and numerically in Chapter 3.
Chapter 4 and 5 are dedicated to the development of numerical simulations for the
evaluation of multispecies biofilm performance. Chapter 6 introduces the
"invasion model". In Chapter 7, conclusions and recommendation for future
research are presented.



Chapter 2

Continuum and discrete approach in
modeling biofilm development and
structure: a review

The scientific community has recognized that almost 99% of the microbial life on
earth is represented by biofilms. Considering the impacts of this sessile lifestyle
on both natural and human activities, extensive experimental activity has been
carried out to understand how biofilms grow and interact with the environment.
Many mathematical models have also been developed to simulate and elucidate
the main processes characterizing the biofilm growth. Two main mathematical
approaches for biomass representation can be individuated: continuum and
discrete. This review is aimed at evaluating the main features deriving from the
application of each approach. Continuum models can simulate the biofilm
processes in a quantitative and deterministic way. However, they require a
multidimensional formulation to take into account the biofilm spatial
heterogeneity, which makes the models quite complicated, significantly increasing
the computational efforts. Discrete models are more recent and can represent the
typical multidimensional structural heterogeneity of biofilm in good agreement
with experimental expectations, but they generate computational results that
include elements of randomness, introducing stochastic effects into the solutions.
This paper gives general guidelines to select the most suited model, based on the
objectives and needs of the model user.

This chapter was submitted for publication as:
Mattei, M.R., D’Acunto, B., Esposito, G., Frunzo, L., Pechaud, Y. and Pirozzi, F. (2015). Continuum
and discrete approach in modeling biofilm development and structure: a review. SIAM Review,
Submitted.
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2.1 Introduction

Recent advances in quantitative recovery and in direct observation of microbial
populations have revealed that biofilms represent the prevailing structures in
microbial lifestyle [31].

In most natural and human environments, biofilms are constituted by highly
structured multispecies communities composed of millions of microorganisms that
accumulate on surfaces and secrete extracellular polymers which anchor the cells
to each other as well as to the surfaces [6, 7, 8, 9, 32, 33, 34, 35, 36].

The bacteria living in a biofilm are not randomly distributed but they live in
distinct niches, benefit from interspecies cooperation [4] and show more
resistance to toxic substances such as antibiotics, chlorine and detergents thanks
to diffusion barriers [5]. Biofilms are important components of food chains and
are involved in self-purification processes in soil, water and sediments and in the
biodegradation of organic compounds including environmental pollutants. They
have been used to treat wastewater since the end of the 19th century [14].
Comparing with suspended cells, the bacteria growing in biofilms show some
advantages: i) they cannot be washed away with the water flow but they grow in
locations where their food supply remains abundant; ii) they show an increased
resistance to antimicrobial agents and allow the achievement of a higher biomass
concentration value in bioreactors; iii) their physical structure permits the
formation of several bacterial species contributing to the treatment of different
organic and inorganic substrates [37]. At the same time biofilms can have a
significant impact on the surrounding environment, including biofouling,
biocorrosion, oil field souring and infections in host tissues or medical implants
[33].

Biofilm formation is a dynamic process resulting from the balance of several
physical (substrate transport, detachment, etc) and biochemical factors (microbial
growth, substrate conversion, etc) [18, 27]. The formation of various biofilm
architectures and the related activities are strongly affected by the specific
environmental conditions, such as electron donors and acceptors levels,
hydrodynamic conditions, carbon source, etc [38], in which these sessile
communities grow. For example, porous biofilms with channels and voids
between the finger-like or mushroom outgrowths are typical of a
substrate-transport-limited regime instead compact and smooth biofilms occur
when the biomass growth rate is limiting or the shear stress is high [36].

Mathematical modeling of biofilm development has been widely performed
during the last decades. Biofilm models represent a perfect means to understand
the basic principles determining biofilm formation, composition, structure and
function [39] and therefore they can be used to effectively utilize and control
biofilms in industrial and medical settings [40]. Mathematical models come in
many forms that can range from very simple empirical correlations to
sophisticated and computationally intensive algorithms that describe
three-dimensional (3D) biofilm morphology and activity [2]. The domain of
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interest is usually divided in three compartments: the bulk liquid, the boundary
layer and the biofilm itself (Figure 2.1). All biofilm models simulate the dynamics
of two types of components, particulate (active and inert biomass, EPS) and
dissolved (substrates and metabolic products), and generally include three main
elements: transport mechanism; consumption and growth mechanism; and loss
mechanism [33].

Figure 2.1: Schematic representation of biofilm model classification adopted in this
review and based on biomass representation and dimensionality: a) 1D continuum
models; b) multidimensional continuum models; c) Cellular Automata; d)
Individual based Models (for multidimensional models only the 2D representation
has been reported).

The transport of dissolved compounds to the cells within the biofilm matrix is
governed by diffusion. It plays a crucial role in biofilm development, since the
concentrations of nutrients and products determine the rates of microbial
reactions, and all the processes that generate an increase in volume are driven by
nutrient availability [19]. Moreover, substrate concentration trends within the
biofilm contribute to the formation of different environmental niches [41].
Biomass growth kinetics depend on substrate concentrations; bacteria, by
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consuming substrate, grow and duplicate, produce exopolymeric substances (EPS)
determining an increase in the biofilm volume, usually called biomass spreading.
Models proposed different approaches to describe the spreading of the newly
formed amount of biomass, but the proper representation of biomass division and
spreading still remains one of the most controversial topics [19]. Detachment is a
determining factor for biofilm-structure formation [42, 43]. It represents the
primary process that balances microbial growth and, thereby, determines the
steady state accumulation of the biofilm and the overall biofilm activity [19, 44],
and it greatly affects the performance and the stability of biofilm reactors [45].

The review presented herein focuses on the description of the different
modeling approaches used to represent particulate components and simulate
biomass transport mechanism. Biofilm displacement is mainly caused by cell
growth and division and EPS production, and can be affected by other processes
changing the biofilm volume, such as attachment and detachment [2]. Based on
biomass representation, biofilm models have been classified in two main
categories:

- continuum models, which do not take directly into account the behavior of
an individual microorganism as they treat biomass as a unicuum, based on
population-averaged behaviour of different functional groups;

- discrete models, which are generally defined bottom-up models, since
biofilm structure is not furnished as an input to the model, but the complex
morphology of biofilms emerges as a result of the actions and interactions
of the biomass units with each other and the environment.

Each category is further subdivided by considering model dimensionality and
the way in which diffusion and biomass spreading is treated. In particular,
continuum models are classified in one-dimensional (1D) and multidimensional
continuum models; discrete models are divided in cellular automaton (CA)
models, hybrid differential-discrete CA models and Individual-based Models
(IbMs). Continuum models treat the dynamics of biomass spreading by using
differential equations, widely used in mechanics and transport phenomena. In
discrete models, biomass spreading is assumed to be a stochastic process. This
review work focuses on the description of the different modeling approaches
present in literature and it is aimed at evaluating the main features of the analyzed
biofilm models in order to enable readers to select an appropriate modeling tool
based on their own needs.

2.2 Continuum models

As their name implies, continuum models consider the domain of interest as a
continuum [46] and biomass spreading as governed by differential equations. All
continuum models are based on conservation laws which are formulated as
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balances of conserved properties (mass, volume, momentum, energy, etc.). For
1D models, these equations come in the form [47]:

∂D

∂t
+
∂J

∂z
= R (2.1)

where:
z is the space coordinate;
t denotes the time variable;
D represents a 1D property;
R states the net 1D property production rate.

Continuum models have undergone an evolution in terms of complexity: from
1D steady-state models, developed during the early 1970s, to multidimensional
multispecies dynamic models that have been conceived during the last decade.
This evolution has been influenced by the advances in computational and
experimental tools and reflects the need of new biofilm models able to provide
more complex two or three dimensional descriptions of microbial biofilms, in
agreement with experimental observations. Based on their dimensionality,
continuum models have been classified in two groups: 1D continuum models and
multidimensional continuum models. 1D models consider only the direction
perpendicular to the substratum while multidimensional models neglect the
concepts of uniform thickness and layering of biomass typical of 1D models, and
allow the biofilm matrix to expand in more than one direction.

2.2.1 One dimensional continuum models - Pioneer works

The first continuum biofilm models [48, 49] have been developed in 1970s in
order to evaluate the substrate utilization kinetics in biofilms. These pioneer
works were based on the concept that substrate removal from an aqueous phase
requires diffusion of reactants into the biofilm, metabolism by microorganisms
and diffusion of metabolic products through the biofilm and into the aqueous
phase. These models can be considered the first example of continuum models
since they were able to catch the essentials of biofilm development, idealizing the
processes of substrate utilization, molecular diffusion and mass transport as
simultaneous differential equations for a homogeneous layer of bacteria. In [49],
the authors adopted a schematic representation of the system where the biofilm is
assumed to be attached to a flat surface with infinite length and width and
characterized by a uniform cell density denoted Xf and a locally uniform
thickness Lf . Substrate concentration within the biofilm changes only in the z
direction, assumed perpendicular to the surface, and the rate of reaction is limited
by a single substrate named rate-limiting substrate. The decrease in substrate
concentration between the bulk liquid and the biofilm surface derives from an
incomplete mixing of the liquid phase next to the biofilm surface coupled with
mass transfer into biofilm and is modelled by the introduction of a liquid layer
adjacent to and permeating the biofilm. In this layer the entire resistance to mass
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transport from the bulk liquid to the surface is concentrated. The depth of
diffusion layer L, is defined as the equivalent depth of liquid through which the
actual turbulent mass transport can be described by molecular diffusion alone
[50].

The model introduced in [49] was able to couple the mass transport from the
bulk liquid with the substrate biodegradation within the biofilm. In particular, the
following steady-state differential equation has been used to describe substrate
utilization within the biofilm:

Df
∂2Sf
∂z2

=
kXfSf
KS + Sf

, 0 ≤ z ≤ Lf , (2.2)

where:
Df is the molecular diffusivity in biofilms [L2T−1];
Sf is the concentration of rate-limiting substrate at any point in biofilm [ML−3];
Xf is the bacterial concentration within the biofilm, assumed constant with depth
[ML−3];
KS is the Monod half velocity coefficient [ML−3];
k is the maximum utilization rate of the rate-limiting substrate [T−1].

The rate of substrate utilization within the biofilm has been modelled by a
Monod-like bacterial kinetics and the diffusion flux through the diffusion layer and
the biofilm by the Fick’s law of diffusion. However, this pioneer work did not
include any considerations on the growth and decay of the bacteria composing the
biofilm.

The model proposed in [49] has been improved later by many researchers [51,
52, 53, 54, 55, 56] who amended the basic model of mass transport in a steady
state biofilm with additional processes. Rittman and McCarty [51] incorporated
the expressions for biofilm growth and decay for a steady-state biofilm, which is
defined as a biofilm that for a given bulk liquid substrate concentration has neither
net growth nor decay. Later, Rittmann [54] introduced the biofilm loss rate caused
by shear stress. This term has been formulated as a first order expression similar to
the term used for decay losses.

2.2.2 One dimensional continuum models

With the ongoing progress in experimental methods, more sophisticated
multisubstrate-multispecies models have been developed
[23, 27, 30, 47, 57, 58, 59, 60, 61, 62, 63, 64, 65]. These studies neglect the
simplifying assumption of single-species biofilms and are mostly centered on the
biofilm growth dynamics, including the biofilm thickness, the spatial distribution
of microbial species and the substrate concentrations.

The 1D multispecies model of biofilm growth introduced by Wanner and
Gujer [23, 64] has been successfully applied to many biofilm studies since its
development and represents a pioneer work in the understanding of the complex
bulk interactions characterizing multispecies biofilms. This model takes into
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account the following processes: (a) the simultaneous substrate utilization and
diffusion within the biofilm; (b) the external mass-transport resistance from the
bulk liquid to the biofilm surface; (c) the growth of new biomass proportional to
substrate utilization; (d) the biomass loss from endogenous respiration and
detachment, and (e) the formation of inert biomass. The following equations have
been introduced [23, 27]:

∂Xi

∂t
+
∂

∂z
(uXi) = ρirM,i (z, t,X, S) , i = 1, ... n, 0 ≤ z ≤ L (t) , t > 0, (2.3)

∂u

∂z
=

n∑
i=1

rM,i = G (z, t,X, S) , 0 < z ≤ L (t) , t > 0, (2.4)

L̇ (t) = u (L (t) , t) + σa (t)− σd (t) , t > 0, (2.5)

∂Sj
∂t

−
∂

∂z

(
Dj

∂Sj
∂z

)
= rS,j (z, t,X, S) , 0 < z < L (t) , t > 0, j = 1, ... , m,

(2.6)
where:
z is the biofilm growth direction assumed perpendicular to the substratum [L];
ρi denotes constant density [ML−3];
Xi(z, t) = ρifi denotes the concentration of microorganisms i, X = (X1, ..., Xn)
[ML−3];
fi(z, t) is the volume fraction of microbial species i,

∑n
i=1 fi = 1;

u(z, t) is the velocity of microbial mass [LT−1];
Sj(z, t) denotes the concentration of substrate j, S = (S1, ..., Sm) [ML−3];
rM,i(z, t,X,S) is specific growth rate [ML−3T−1];
L(t) denotes the biofilm thickness, free boundary [L];
σa(t) is the attachment biomass flux from bulk liquid to biofilm [LT−1];
σd(t) is the detachment biomass flux from biofilm to bulk liquid [LT−1];
Dj denotes the diffusivity coefficient of substrate j [L2T−1];
rS,j(z, t,X,S) is the conversion rate of substrate j [ML−3T−1].

Appropriate initial and boundary conditions are required to solve the previous
system of nonlinear partial differential equations. In particular, at the
substratum-biofilm interface z = 0 the condition of no concentration gradient is
assumed for both the soluble and the particulate components. Equation (2.3) is
derived from the mass balance of the ith microbial species set up for a control
volume. Wanner and Gujer [23] modeled the spreading of biomass as an advective
mass flux of each ith species. In particular, the authors assumed that when the net
growth rate is positive in a control volume and the biomass density remains
constant, the biomass increases giving rise to a flux of biomass that crosses the
control-volume’s boundary. Equation (2.4) determines the velocity at which the
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microbial mass is displaced with respect to the film-support interface. The value
of u(z, t) is determined by the mean observed specific growth rate of the biomass
and it is assumed identical for all species. Equation (2.5) defines the velocity at
which the film-water interface moves; it depends on both the velocity at which the
microbial mass is displaced, the velocity at which the biomass is exchanged
between the biofilm and the bulk liquid and vice versa, here denoted as σd(t) and
σa(t). In their work, Wanner and Gujer [23] considered biomass loss due only to:
shear stress, modeled setting σd(t) = λL2 with λ constant, and sloughing by
setting σd(t) as a δ Dirac function.

The model introduced by Wanner and Gujer [23] can be classified as a free
boundary value problem which is very complicated to discuss due to the
contemporary presence of hyperbolic and parabolic partial differential equations.
In addition, when discussed numerically, it needs a special discretization scheme
to consider the time-dependent change of the space domain [27, 28, 30]. The free
boundary value problem contains two groups of nonlinear partial differential
equations: the first system of n nonlinear hyperbolic partial differential equations
describes the growth of microbial species in biofilms (2.3); the second group of m
nonlinear parabolic partial differential equations governs the diffusion of
substrates (2.6). The two systems are strictly connected as the biological
processes they are aimed at modeling. The solution approach used by Wanner and
Gujer [23] is based on a coordinate transformation that eliminates the moving
boundary by introducing the space coordinate ζ(t) = z/L, which describes the
distance from the substratum normalized by the biofilm thickness. This
mathematical description of an idealized biofilm has been solved by a numerical
solution technique based on the method of lines and has been addressed to some
case studies. The existence of steady state solutions of this model applied to a
single species biofilm has been proved later in [26].

Contemporary to Wanner and Gujer, Kissel et al. [58] formulated a
multispecies biofilm model able to describe the competition between microbial
species for common substrates within a completely mixed continuous-flow
reactor. This model is based on the same continuum approach used by Wanner
and Gujer [23] but does not include the loss of mass due to detachment. The two
models differ in how they describe the net growth of biomass at any position in
the biofilm and, consequently, in the numerical treatment adopted for the moving
boundary problem. When the biomass increases while the biomass density is kept
constant, Kissel et al. [58] hypothesized that the control volume increases in size
(Figure 2.2). Therefore, the numerical modeling of spatial variability in mass
fractions and solute concentrations is accomplished by dividing the biofilm into a
series of space elements with equal, but variable lengths. After each integration
time step, the elements’ lengths are recalculated, according to the volume
expansion, or contraction obtained for the individual elements. All the equations
have been solved numerically by using a fixed-step-size, fourth-order-accurate,
Runge-Kutta technique. The model has been addressed only to dynamic state and
no attempts have been made to solve equations at steady-state conditions.
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Figure 2.2: Spreading mechanism adopted in [23] and [58] (figure adapted from
[61]).

Rittmann and Manem [61] combined the multispecies biofilm model developed
by Wanner and Gujer [23] with the steady-state assumption. For a steady-state
multispecies biofilm, it is assumed that the growth of all species, deriving from
substrate utilization, is equal to all losses. The model is addressed to simulate
the competition for space in a multispecies steady-state biofilm and to predict the
steady-state substrate fluxes, the biofilm thickness and the species distributions
deriving from specific bulk-liquid substrate concentrations. The model contains a
set of ordinary differential equations, similar to the mass balance equations derived
by Wanner and Gujer [23]. They are converted to be solved in a set of partial
differential equations by introducing the pseudotime derivative, a means to perform
the iterations required to achieve a correct steady-state solution.

The model introduced by Wanner and Gujer [23] was extended later in [47, 65],
in order to simulate the effects of the following biofilm processes neglected in
the previous model: advective transport of dissolved components and diffusive
movement of particulate components in the biofilm, the development of the biofilm
liquid phase volume fraction, the transport of suspended solids within the pore
volume of the biofilm and the exchange of cells and particles between the solid
matrix and the pore volume, and the simultaneous detachment and attachment to
the biofilm surface. In [65], two new state variables have been introduced: εl and
θ. The first one represents the volume fraction of the liquid phase between the
particulate components in the biofilm. The second one, also referred to as porosity,
is introduced as the ratio of the volume between the biofilm solid matrix and the
total biofilm volume. In [47], the porosity and εl represented the same quantity
since the transport of suspended solids in the pore volume is neglected. The two
variables are related by the following equations [65]:

εl +
nx∑
i=1

εP,Si
= θ, (2.7)
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θ +

nx∑
i=1

εM,Si
= 1, (2.8)

where:
θ is the porosity;
εl denotes the liquid phase volume fraction;
εP,Si

represents the volume fraction of the solids suspended in the biofilm pore
volume;
εM,Si

is the volume fraction of the biofilm matrix components.
In both [47, 65], particulate components are assumed to be transported not

only by an advective flux, as stated in [23], but an effective diffusive flux of
particulate components is introduced. This flux wants to describe the transport of
cells and particles in the direction opposite to that of velocity u(z, t). It is
independent from microbial growth and accounts for the mixing of cells or
particles in the biofilm solid matrix as a result of mechanical deformation of the
matrix by hydraulic forces or bioturbation. εl is subject to an analogous advective
flux since it is assumed that advective transport of particulate components does
not change the ratio of liquid to solid phases in the biofilm. Moreover, to
compensate the effective diffusive flux of particulate components, a flux of liquid
phase in the opposite direction is introduced and a production rate for the liquid
phase volume fraction in the biofilm is formulated. The development of the
biofilm liquid phase volume fraction is modeled in order to simulate experimental
data which show that in some cases porosity decreases from the biofilm surface to
the substratum. The dissolved components are assumed to be transported in the
liquid phase of the biofilm by a diffusive and advective flux, which is induced by a
flux of water that derives from the transport of particulate components. The
advective flux assumes a negligibly small value compared to the diffusive one.
Moreover, the model [47, 65] also takes into account the simultaneously
attachment and detachment of particulate components at biofilm surface,
neglected in the original mixed-culture biofilm model in which only the dominant
process was explicitly modeled. More precisely, in [23] the transport of cells and
particles happens only towards the biofilm surface and as a consequence, new
attaching particulate material can only adsorb at the biofilm surface, but cannot
penetrate the biofilm. Modeling simultaneous attachment and detachment is
possible only taking into account the diffusive transport of particulate components
which reproduces the mixing of cells and particles over the biofilm depth. The
partial differential equations introduced in [65] have been converted to a system of
algebraic and ordinary differential equation and solved by the integration routines
and numerical algorithms implemented in AQUASIM, a computer program
designed for the identification and simulation of aquatic systems [66]. A very
detailed description of this simulation tool has been provided in [67].

Later, Rauch et al. [60] introduced a comprehensive simplified model, whose
approach consisted in decoupling the modeling of the diffusion process and
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spatial distribution of bacteria species from the biokinetic reactions. This
simplification derives from the need in faster, but sufficiently accurate predictions,
avoiding the computational efforts for solving the partial differential equations.
Diffusion is modeled as a steady-state phenomenon within each time step since
substrate profiles are assumed to reach the equilibrium very fast. The typical
concentration boundary layer is neglected. The system is divided in two
compartments: bulk liquid and biofilm. The biofilm is constituted by a liquid
phase in which dissolved substances are transported by molecular diffusion and a
solid matrix which is constituted by several bacterial species, particulate substrate
and inert material. The concentration of particulates and density in biofilm are
expressed by equation (2.8). Substrates are transported inside the biofilm by
molecular diffusion; when they do not penetrate the solid matrix, the reaction is
considered as diffusion limited and takes place only over a certain depth of the
biofilm. According to Harremoes [68], the volumetric reaction rate is assumed to
be zero-order respect to the concentration of substrate S in the biofilm and the
penetration depth is derived from an analytical solution to the diffusion equation.
The model is solved by using a two-step procedure: (1) for each conversion
process that is influenced by diffusion, the active fraction of the biomass within
the biofilm is computed by means of the analytical solution to the diffusion
equation; (2) all the conversions within the biofilm are then calculated assuming
the biofilm as an ideally mixed reactor but, with only the active fraction of the
species contributing. The use of zero-order reaction rates is justified by the need
of analytical solution for the substrate penetration depth that represents a basic
concept for decoupling the diffusion and biokinetics reaction.

Despite their dimensionality, 1D biofilm models still represent an active topic
in biofilm research area as proved by the recent contributions proposed in
literature. In [59], the authors introduced a 1D mixed-culture biofilm model based
on the hypothesis that each particulate component has different space occupancy
within the biofilm according to its fundamental nature, such as size and density. In
this work space occupancy is not defined as the reciprocal of component density,
as stated in [47], but this feature also takes into account the liquid volume that
coexists within the biofilm solid matrix. Internal porosity is calculated by the
composition of the particulate components, which changes during biofilm growth.
The model is based on the same mass balance equations introduced in [47, 65],
but derived for the whole biofilm volume. The concept of effective diffusive
transport is introduced and the model has been successfully applied to simulate
the consolidation phenomenon. The partial differential equations have been
solved by converting them into a system of ordinary differential equations in a
dimensionless form, later solved by using the ode15s tool provided in MATLAB
software.

Rittmann et al. [62] reported a transient multispecies biofilm model
(TMSBM) especially focusing on the kinetics of the growth related microbial
products. This model represents a synthesis of the key modeling features used to
describe multispecies biofilms and is addressed to biofilms that experience
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time-varying conditions, particularly including periodic detachment by
backwashing. The TMSBM contains non steady-state mass balances for each of
the four types of biomass represented (2.3) and for the soluble species in a layer
of biofilm (2.6). Similarly to [23], it is assumed that the spreading of the biomass
gives rise to a biomass-flux which involves a biomass velocity. This velocity
represents the physical rate at which all types of biomass move into or out of a
biofilm layer by crossing the layer’s boundaries. The partial differential equations
constituting the model are solved by using a separate-solution strategy. The
calculations for the soluble species are separated from the calculations for the
biomass species in order to avoid the accumulation of rounding errors. Substrate
and product calculations are performed for fixed biomass distributions, while
substrate profiles are kept constant when biomass calculations are performed.
This strategy allows to reduce the computing load. To solve the biomass balance
equations the TMSBM is based on a hybrid strategy between the approach used in
[23] and [58]. This new method contemporary allows the biomass flux and a
change in the layer size. The biofilm is divided in layers having the same size all
over the time and the sum of growth and decay for all the biomass species in all
layers indicates the overall net growth. Moreover, the model includes a novel
accounting scheme that takes into account the net growth of each species in a
layer relative to the net growth of all species within that layer and within the
adjacent layers.

Recently, D’Acunto and Frunzo [27, 30, 57] have transformed the partial
hyperbolic differential system (2.3) introduced in [23] into an integral system by
using a characteristic-like method, where the characteristics are the lines
z = s(z0, t) defined by:

∂s

∂t
(z0, t) = u (s (z0, t) , t) , s (z0, t) = z0 0 ≤ z0 ≤ L0. (2.9)

The same method has been applied later for a qualitative analysis of the
attached cell layer in multispecies biofilm formation [30]. Compared to the free
boundary problem introduced in [23], this biological process is described by a
free boundary problem for nonlinear hyperbolic equations where the initial
biofilm thickness is set to zero. In this case, the free boundary is represented by a
space-like line. An existence and uniqueness theorem of solution to the systems
(2.3) - (2.6) has been proved by the fixed point theorem [27, 30]. The method of
characteristics has been used also for numerical purposes to simulate the
dynamics of multispecies biofilms [57, 69].

Klapper and Szomolay [70] have demonstrated by an exclusion principle that
Wanner-Gujer model [23], evaluated under steady-state conditions, leads to
restrictions on ecological structure since it neglects downward microbial motility.
The introduction of a diffusion flux for motile species [47, 65] may be able to
negate conditions leading to the exclusion principle. In a recent contribution,
D’Acunto et al. [71] have been able to take into account the biological process of
colonization of new species and transport from bulk liquid to biofilm (or
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vice-versa) keeping the equations hyperbolic.
Parallel to the development of 1D dynamic models, more complex

steady-state models have been developed during the last decade. Perez et al. [72]
developed a biofilm model based on the assumption of zero and first order kinetics
in biofilms to compute fluxes of substrate into the biofilm. More precisely, the
approach used is based on the weighted average of the analytical solutions for first
and zero-order reaction kinetics. Compared to numerical models, the use of
analytical solutions, in addition to simplicity, allows the analysis of the effects that
each term, or parameter can have on the overall flux. Beyenal and Lewandowski
[73] introduced a model able to reproduce biofilm heterogeneity by using a 1D
continuum approach. The biofilm is modeled as composed by a finite number of
layers characterized by different nutrient concentration, effective diffusivity and
density. Each of these layers is modeled as a uniform biofilm and the effective
diffusivity is recognized as the control parameter for space discretization. The
model is aimed at quantifying mass transfer in stratified biofilm and comparing
the results with a homogeneous biofilm model. The effective diffusivity is
expressed as a linear function of space coordinate z and biofilm density; its
gradient is used to append the equation quantifying mass transfer in homogeneous
biofilms by a factor representing biofilm heterogeneity. More recently, Gonzo et
al. [10, 74] developed a new approach to model steady-state activity of
heterogeneous biofilm. The main difference with the work of Beyenal and
Lewandowski [73] is that the new approach does not require numerical
simulations.

2.2.3 Multidimensional continuum models

The development of multidimensional continuum models is relatively recent and
reflects the need of reproducing the complex morphology of biofilms, which arises
from the interaction with the surrounding liquid and the dynamics of transport and
consumption of substrates. These models are amenable to mathematical analysis
and do not rely on ad hoc rules to simulate growth processes.

As stated in [75], in the 1D case, dynamic biofilm models have been mostly
formulated as free boundary value problems and were based on the assumption
that newly produced biomass is converted into new biofilm volume which moves
according to a convective transport mechanism. The increasing biofilm thickness
and the speed of propagation of the biofilm/liquid interface normal to the
substratum can be calculated from the production terms by integration over the
biofilm thickness. In the multidimensional case, this approach requires the
introduction of an evolution equation for the convective biomass transport
velocity. This equation can be derived by introducing the idea that biofilm growth
generates a pressure field within the biofilm, which is responsible for the
establishment of a spreading velocity. Therefore, a further unknown variable
(pressure) has to be modeled. To solve this issue different modeling approaches
have been introduced: the description of the biofilm as a rigid/elastic/viscoelastic
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Figure 2.3: 2D continuum models: a) spreading mechanism adopted by Eberl et al.
[3]; b) spreading mechanism adopted by Dockery and Klapper [33].

solid or highly viscous fluid has been investigated and the idea of estimating
material properties of the biomass and incorporating them in model equations has
been taken into account in order to better understand biofilm structural stability.

The first attempt to model biofilm growth as a convective transport mechanism
has been introduced in [76, 77] where the authors developed a macroscopic
description of microbial growth by using the sub-cell-scale information of mass
transport and intracellular reactions. However, the mechanistic problem arising
from the calculation of the convective field has been solved only by introducing an
empiricism which requires the experimental determination of a growth coefficient.

An alternative approach to the convective transport mechanism has been
introduced in [3]. In this work, the authors developed a spatio-temporal
continuum model in which the biomass spreading is described by a nonlinear
density-dependent diffusion mechanism (Figure 2.3).

The model is aimed at describing hydrodynamics, transport and consumption
of nutrients and biomass production for a single species biofilm. Biomass
spreading occurs only when the biomass density m(t, x) reaches a known a priori
maximum value (waiting time behavior); as a consequence a density-dependent
diffusion coefficient is introduced. The system is divided in two regions separated
by an interface Γ : Ω1 represents the liquid region and Ω2 is the solid biofilm
region. The distinction between the liquid region Ω1 and Ω2 is made by the
biomass density m(x, t) = 0 or m(x, t) > 0, respectively. The model is governed
by the following equations [3]:

∇u = 0,
∂u
∂t

+ u · ∇u = −
1

ρ
∇p+∇2u, in Ω1 = {x ε Ω|m (t, x) = 0} ,

(2.10)

u = 0, in Ω2 = {x ε Ω|m (t, x) > 0} , (2.11)
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∂c

∂t
+u·∇c = ∇· (d1 (m)∇c)−f (c, m) in Ω2 = {x ε Ω|m (t, x) > 0} , (2.12)

∂m

∂t
= ∇ · (d2 (m)∇m) + g (c, m) in Ω2 = {x ε Ω|m (t, x) > 0} , (2.13)

f (c, m) =
k1cm

k2 + c
, g (c,m) = k3 (f (c,m)− k4m) , (2.14)

where:
c(t, x) represents the nutrient concentration [ML−3];
m(t, x) is the biomass density [ML−3];
u(t, x) is the flow velocity [LT−1];
p(t, x) is the pressure in the bulk region when the density and kinematic viscosity
are kept constant [ML−1T−2];
ρ is the fluid density [ML−3];
f(c,m) is the Monod reaction term for nutrient consumption [ML−3T−1];
g(c,m) is the biomass production and decay term [ML−3T−1];
d1(m) is the diffusion coefficient for nutrient transport [L2T−1];
k1, ..., k4 are parameters for biomass production and decay;
d2(m) is the diffusivity of biomass density [L2T−1] expressed by the following
equation:

d2 (m) =

(
ε

mmax −m

)a
mb (2.15)

The equations (2.10)-(2.15) solve both the hydrodynamics and the biofilm
evolution; they are strictly connected since the regions Ω1 and Ω2 both depend on
m(t, x). Biomass production is assumed to be established only by reaction
kinetics and the biomass diffusivity is assumed to vanish as m(t, x) becomes
small, but it increases as m(t, x) grows thanks to biochemical reactions
(2.12)-(2.15). The model (2.10)-(2.15) is mathematically rather complicated and
difficult to handle analytically. To solve it, the authors assumed hydrostatic state,
since the major difficulties of the model derive from the Navier-Stokes equations
(2.10) and introduced dimensionless dependent variables. In this way the model
reduces to a spatio-temporal predator prey model for biomass and nutrients. The
model behavior has been validated only by numerical simulations carried out in
1D and 3D by using a finite difference scheme which is solved explicitly for the
slower biomass spreading process and implicitly for the faster nutrient transport
process. The numerical analysis is aimed at showing the sensitivity of the biofilm
behavior to crucial parameters and confirms that model results are in good
agreement with previous experimental and modeling experience.

Further analysis and application of the model introduced in [3] have been
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performed in [75, 78, 79, 80]. In these studies, the authors mainly focus on the
evaluation of different numerical schemes able to handle the diffusion singularity
effects arising from equation (2.15). Recently, Eberl and Sudarsan [81] have
extended the degenerated diffusion-reaction model for biofilm growth and
disinfection introduced in [79] to account for the convective transport of
substrates in the bulk liquid. A thin-film approximation to the Navier-Stokes
equations was considered so that the fluid flow could be solved analytically.
However this simplification can be used only for slow flows in narrow channels.

The concept of biofilm as a homogeneous, viscous, and incompressible fluid of
constant density, satisfying Darcy’s law has been firstly introduced in [33]. In this
pioneer work, Dockery and Klapper introduced an equation that regulates the state
variable p (pressure) in the biofilm phase:

λ∇2p+ g (u(S)) = 0, (2.16)

where:
p is the osmotic pressure [ML−1T−2];
λ is the Darcy constant [TL3M ];
S is the concentration of the rate–limiting substrate [ML−3];
g is a prescribed growth function [T−1];
u is the substrate uptake rate [ML−3T−1].

The pressure equation is solved in the biofilm region after setting specific
boundary conditions: the aqueous region is supposed to be static near the biofilm
surface and so a constant pressure is assumed for the bulk liquid (Figure 2.3).
Equation (2.16) is coupled with the solution of a nutrient diffusion-reaction mass
balance, which provides the field of concentration S. The substrate is assumed to
diffuse through the bulk region into the biofilm, where it also spreads and is
consumed. The model does not take into account the internal chemical signaling
for biofilm growth and behavior and the influence of fluid dynamics. The
equations have been solved numerically on a uniform two-dimensional (2D)
rectangular grid. The biofilm-bulk liquid interface evolution is tracked by using
the level set method.

In a further work, Klapper et al. [82] investigated biofilm material properties
by using a system of viscoelastic fluid equations, coupled to a linear Jeffrey’s
viscoelastic stress-strain law. More precisely, the standard fluid equations of
momentum (2.17) and continuity (2.18) have been simplified under the hypotheses
of quasi-static evolution of phenomena (slow growth in the biofilm matrix), high
viscosity and divergence-free velocity field in the biofilm compartment:

∇σ = 0, (2.17)

∇(ρu) = 0, (2.18)

where:
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σ is the stress tensor for the biofilm matrix [ML−1T−2];
ρ is the biofilm matrix density [ML−3;
u is the biofilm matrix velocity field [MT−1].

The system of equations is based on elements of associated polymer physics
and results consistent with experimental results of biofilm deformation, failure and
detachment in response to mechanical forces.

The work of [83] represents the sequel of [33] and examines the formation of
biofilm fingers and mushrooms. According to [82], the hypothesis of biofilm as a
viscoelastic fluid is adopted, but the analysis is restricted to the case of static or
nearly static bulk fluid. Therefore, the substrate is assumed only to diffuse from
bulk liquid into the biofilm and the shear stress and the associated viscoelastic
response is not considered. Under the hypothesis of incompressibility of the
biofilm matrix and the assumption of Darcy’s law for the biofilm interface
velocity, the continuity equation reduces to equation (2.16). According to [33],
the biofilm-liquid interface z = h(x, y, t) evolution follows equation (2.19) [83]:

dh

dt
= − (∇p · n) (ẑ · n) (2.19)

The performed nonlinear analysis suggests that in the case of biofilms free of
external mechanical stress, overall growth is inhibited by the presence of growing
perturbations in the linear stage. A generalization of the previous 2D model [33]
and of the earlier 1D model [23] has been proposed by Alpkvist and Klapper [84]
who developed a continuum model for the heterogeneous growth in biofilm
systems with multiple species and multiple substrates. This model represents the
early work of the rigorous mathematical treatment of continuum multidimensional
multispecies biofilm models and it is based upon a combination of the approach
introduced in [23, 33]. The domain is subdivided in two regions: the biomass
region Bt and the liquid region ΩBt where Ω is defined as an open sunset of R3.
The domain has two moving boundaries: the biomass-liquid interface defined by
the curve Γt and the bulk liquid interface at a fixed height ΓHb above Bt, defined
by the curve ΓHb. In the region above the curve ΓHb, fluid mixing is able to
replenish or remove diffusive components faster than they are used or produced.
The model takes into account Nb different components or phases for the biomass
region and Nc different substrates. The model consists of a series of partial
differential equations derived on the basis of conservation laws and reaction
kinetics. As in [23], the transport of biomass is governed by an advective process
characterized by a volumetric flow u(t, x) equal for all species. According to
[33], the biofilm is modeled as a homogeneous, viscous, incompressible fluid with
a velocity given by Darcy’s law [84]:

u = −λ∇p, (2.20)

where:
p = p(t, x) is the pressure [ML−1T−2];
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λ is the Darcy constant [TL3M ].
The model is based on semilinear Poisson equations for substrate

concentrations (2.21), linear Poisson equation for pressure (2.22), and advective
equations for the biomass volume fractions (2.23) [84]:

−Dj∇
2Cj = rj j = 1, ..., Nc, (2.21)

−∇2p =

Nb∑
i=1

gi
ρ∗i

i = 1, ..., Nb, (2.22)

∂ϑi
∂t

−∇p · ∇ϑi =
gi
ρ∗i

−

Nb∑
i=1

gi
ρ∗i

i = 1, ..., Nb, (2.23)

where:
Cj is the substrate concentration [ML−3];
Dj is the assumed constant substrate diffusivity [L2T−1];
rj is the substrate uptake rates [ML−3T−1];
gi is the biomass growth or loss rate [ML−3T−1];
ρ∗i is the individual density for biomass components, assumed to be constant in
time and space [ML−3];
θi = θi(t, x) denotes the volume fraction of the ith species.

Applied to a planar biofilm system the model reduces to a 1D model equivalent
to Wanner and Gujer system. Model simulations have been based upon accepted
numerical methods with an existing error analysis. In particular, the time evolution
of the biomass region is calculated by using a level set function as in [33]. The
model has been used to simulate in 2D and 3D biofilm growth in growth-limited
and transport-limited regimes.

A continuum model for a single species bacterial colony growth has been
introduced in [85]. The biomass density is supposed to assume zero outside and a
distinct value inside the biomass region. Therefore, the biofilm growth problem is
solved by tracking the boundary of the biomass domain. In this case, the equation
for the time-varying velocity field has been derived by considering a chemotactic
growth, i.e. the flow of biomass has been assumed to move in the direction of the
increasing nutrient concentration. This equation is formulated such that the
equation of continuity for biomass density holds and it is coupled to the
reaction-diffusion equation for substrates. According to [33], the equations have
been solved by using the level set method for what concerns the moving boundary
of biofilm region and a second-order finite difference scheme for the substrate
field.

Another deterministic approach to model biofilm growth has been derived
from material mechanics [86]. The biofilm is modeled as a continuous, uniform,
isotropic, and hyper-elastic material, whose expansion and deformation are
governed by material stress-strain relations. The density is kept constant by
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deforming the biofilm matrix; this means that the pressure generated by cell
division has to meet the resistance of the EPS matrix surrounding microbial cells.

The work of Alpkvist and Klapper [87] represents one of the first attempts
made to include the liquid flow hydrodynamics in a biofilm model. The authors
focus mainly on the interaction between fluid flow and biomass and therefore
neglect biofilm growth. Biofilm is characterized as a viscous body embedded in a
viscous fluid in a 3D domain and the whole system is governed by the
Navier-Stokes equations of momentum and incompressibility-induced mass
balance:

∂u
∂t

+ u · ∇u = −
1

ρ
∇p+ ν∇2u +

1

ρ
F, (2.24)

∇ · u = 0, (2.25)

where:
p = p(t, x) is the osmotic pressure [ML−1T−2];
u = u(t, x) is the flow field [LT−1];
F = F(t, x) is the internal viscoelastic force density within the fluid-biofilm system
[ML−2T−2];
ρ is the density of water [ML−3];
ν is the kinematic viscosity of water [M2T ].

The macroscopic behaviour of biofilms is coupled to the flow of biomass and
liquid through the function F = F(t, x) in equation (2.24). The equations have
been solved by using the Immersed Boundary Method which allows the authors to
evaluate the behavior of the whole system by directly solving the Navier-Stokes
equations.

Further works have tried to reproduce both biofilm growth and liquid
hydrodynamics; they are based on simplifying assumptions for what concerns
Navier-Stokes equations and make use of specific methods to solve the partial
differential equations on irregular shape domains. One example is furnished by
the work of Duddu et al. [88] who proposed a continuum model to estimate
substrate concentration, biomass advection velocity and biomass volume fraction
and extended later the model to fluid flow velocity field calculation [89]. The
biofilm is characterized as a homogeneous isotropic elastic material constituted by
two components, the active and the inactive biomass, while the fluid is assumed to
behave as Newtonian with constant viscosity and in laminar flow. The fluid flow
and the stress deformation problems are uncoupled under the hypothesis of small
stress induced deformation [45]. The biofilm growth is supposed to be
irrotational; therefore the velocity field is derived from a potential function. The
system of partial differential equations governing the fluid hydrodynamics,
substrate transport at steady-state, the mass balance for total biomass written in
terms of the growth velocity potential and the mass balance equation for active
biomass have been solved by using the extended finite element method while the
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location of the biofilm/fluid interface is evaluated by the level set method.
In [90] a Hele-shaw type-like modeling is introduced: the modeled system is

assumed to be composed by two fluids (biofilm and liquid) characterized by
different viscosities and separated by a moving interface. The velocity field in the
liquid compartment is assumed to be divergence-free due to incompressibility
while the velocity field in the biofilm compartment is not divergence-free and
equation (2.16) is assumed to hold. Compared to [33], this work solves the
pressure equation in the entire domain by imposing transmission conditions on the
biofilm/bulk liquid interface, including the effects of the fluid motion induced by
the evolution of the biofilm/liquid interface and accounts for advective substrate
transport in and out of the biofilm. The mathematical problem has been solved by
coupling the immersed interface method with the Level-Set method. Similarly,
Cogan [91] developed a model in which the biofilm is treated as a viscous fluid
immersed in a fluid of lower viscosity but the equations governing the system are
assumed to be Stokes type-like due to the low values of Re. Other works deal
with the biofilm treated as a biological gel composed of EPS and water and in
which the bacteria are immersed [92] or investigate the biofilm by using a
phase-field model in 1D and 2D respectively [93, 94]. Clarelli et al. [95] have
recently introduced a fluid dynamics model based on the mixture theory which
considers the biofilm as a multiphase fluid. In contrast with most of the existing
models, this work considers a finite speed of propagation for the hyperbolic
equations.

2.3 Discrete Models

Discrete models for biofilm research started to be developed in 1990s. Biofilms
are assumed to be living systems inherently stochastic and researchers have been
devising ways to express this stochasticity [96]. They use approaches where the
large-scale dynamics are emergent from the processes occurring at a small-scale
and are generally defined bottom-up models since biofilm structure is not
furnished as an input to the model but the complex morphology of biofilms
emerges as a result of the actions and interactions of the biomass units with each
other and the environment. The rules used to model interactions at a local level
can be motivated purely from biological principles, instead of analysis from a
mathematical and physical framework [97]. The basic idea consists in splitting the
biomass accumulation and transport in two separate processes: the biomass
growth kinetics are still governed by ordinary differential equations as for the
continuum models, while the biomass transport mechanism is realized in a
discrete way. Therefore, discrete models have been classified in three groups
based on biomass representation and spreading mechanism adopted:

- CA models;

- Hybrid differential-discrete CA models, in which the mass transport is
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described by using differential equations while the biofilm structure
development is treated by using a CA approach;

- IbMs.

In CA models, the biomass is represented in an array of small compartments
(usually rectangular), as opposed to the agent-based representation of the IbM that
uses particles located anywhere in space and characterized by essential state
variables like cell mass and cell volume. As well as continuum models, CA
models use volume averaging properties (density or concentration) as state
variable for the biomass and are so called biomass-based models. Wood and
Whitaker [76, 77] have provided an analysis of conditions under which biomass
averaging is a valid computational tool. The two groups differ also on the biomass
spreading rules used (see Sections 2.3.1, 2.3.2, 2.3.3).

2.3.1 Cellular Automaton Models

Modeling biomass growth and spreading has been widely performed by using a
CA approach [98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]. CA
models were originally developed for the Game of Life (conceived by the
mathematician John Horton Conway in 1970) and were based on simple rules for
building complex structures from simple and repetitive elements [109]. In
particular, the basic idea consists in miming the physical laws by a series of
simple rules that are easy to compute quickly and in parallel. More properly, a CA
model consists of a simulation which is discrete in time, space and state [110].
Usually the model space is discretized in a grid of rectangular elements (often
squares in 2D or cubes in 3D). Each grid element has four first-order neighbors
and another four second-order neighbors in the 2D rectangular space
discretization [19]. The grid cell is allowed to fill up to a predetermined maximum
and a simple rule-based system is employed to locate the extra biomass in a new
compartment [96]. Substrate diffusion is usually simulated by random walks of
individual substrate particles; while biofilm growth is described as the
multiplication of individual microbial cells when they consume substrate
particles.

CA models can be divided in three classes: (1) deterministic or Eulerian
automata; (2) lattice gas models; and (3) solidification models [110]. For the first
class of models, the spatial domain is divided into a fixed lattice and each lattice
point has a state associated with it. The state at the next step is determined by
earlier states of the cell and its neighbor. This type of CA model reproduces
evolution equation with a partial differential equation or an integral equation.
Lattice gas models are called particle systems and consist of a discrete spatial grid
on which particles move and interact in some prescribed fashion. Solidification
models resemble lattice gas models except for the concept of bound state.

The Diffusion-Limited Aggregation (DLA) models represent the first attempt
to model bacteria colonies structures using a discrete approach
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[111, 112, 113, 114, 115]. These models are based on the same grid system as
standard CAs, but the array contains particles that can move between the squares
in a prescribed fashion. They are based on an analogy between crystal growth and
biofilm accumulation. In particular, DLA models assume that both crystallization
and biofilm formation are driven by the mass transfer of some essential dissolved
compounds from bulk liquid to a solid surface. These models are mostly focused
on the important role played by concentration gradients in the growth mechanism
of bacterial colonies. The biofilm growth is assumed to be determined by the
deposition of new layers of material on an existing surface. Dissolved matter has
to diffuse through boundary layers; when it reaches a reactive surface, a surface
reaction transforms it in solid phase. The basic idea of these models consists in
choosing a seed particle as the origin of a square lattice on a plane. Biofilm
growth occurs when another particle, released far from the origin and allowed to
move randomly, arrives at the nearest neighboring site to the origin and sticks to
the site. Later, these two particles are frozen in this position and another particle is
released. Repeating this procedure, the cluster grows assuming in many cases an
open and branched structure. DLA models are based on the simplifying
assumption that nutrients diffuse only across a liquid boundary layer; actually
nutrients diffuse also into the biofilm, leading to the appearance of a reaction zone
in the bulk biofilm. This means that biofilm does not grow only at the surface but
also in volume and the expansion of the solid-liquid biofilm interface is caused by
internal pressure generated by the growing biomass. DLA models have been
applied to simulate the growth of bacterial colonies both at very low nutrient level
on an agar plate and under higher nutrient concentrations. Although the shapes of
DLA patterns may resemble those of certain bacterial colonies , the biological
mechanism is clearly distinct since cells are added through division of nearby
cells.

Later, Wimpenny and Colasanti [109] have developed a model that adds
biological rules to DLA models. The stationary particle used in DLA models is
replaced by a microbial cell. This microbial cell can occupy a single square and
can produce copies of itself that will occupy neighboring squares. The cells
consume resource units that can randomly diffuse over a predetermined range of
neighboring compartments. In this model, growth occurs only if there is available
free space in the neighborhood of the cell. This mechanism generates growth only
in the outermost cell layer, just like in crystal formation and neglects any growth
occurring inside the biofilm matrix. Moreover, the model does not take into
account the conservation laws of the substrate amount converted into biomass.
Despite these shortcomings, the model was able to demonstrate how changings in
the concentration of a rate-limiting substrate can cause different morphology
varying from dense structure to biofilms penetrated by water channels.

A quantitative CA model for homogeneous biofilms has been introduced in
[106]. The main objective of this work was to link the stochastic CA parameters
with the physical and kinetic parameters used in biofilm modeling in order to
obtain quantitative predictions of macroscale activity. The CA model is presented
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as constituted by six different elements: lattice, cell, states, time, rules and
neighborhood. The biofilm system is divided into two lattices: the first describing
the spatial location of food particles, the second describing the spatial location of
the microbial particles that constitute the biofilm. In the substrate lattice, cells are
subdivided into layers that represent the possible directions of displacement of
substrate particles during diffusion. Each layer in the substrate lattice can have
one of two states, describing absence (0) or presence (1) of food. The number of
food particles in a local neighborhood defines the concentration of substrate at
that location. In the microbial lattice, the cells can assume three different states,
absence (0), presence of one microbial particle (1), or presence of two microbial
particles (2). The latter state describes the situation right after a reproduction
event. The information on each lattice is updated at discrete time intervals. The
dynamics of this update are governed by the CA rules, which represent the
interaction of each cell with its neighborhood of cells with the corresponding cells
in the superimposed lattice. Each rule represents the application of most
important processes occurring in biofilm, namely diffusion, substrate utilization,
bacterial growth, bacterial decay, and microbial distribution. The rules are applied
to the two lattices in a sequential manner. Substrate diffusion is modeled by a
random movement of food particles in the lattice. This movement is simulated in
two steps, mixing and transport. Substrate utilization is modeled by introducing
the probability that during a time interval, a microbial particle will consume a
food particle. Microbial growth is modeled according to [109]. The probability of
a microbial particle disappearing from the lattice at a given time step is evaluated
by a first order coefficient which takes into account microbial decay and
detachment. After the growth and decay steps, the microbial is updated according
to the biomass distribution rules: 1) conversion of a cell with two microbial
particles into two cells with one microbial particle each; 2) elimination of the
empty cells. The CA approach introduced by Pizarro et al. [106] has been applied
later to incorporate the formation of inert biomass within a structurally
heterogeneous multi-species biofilm, the mechanisms of inert biomass decay and
to include a self-organizing development of the biofilm structure [107].

2.3.2 Hybrid differential-discrete cellular automaton models

Hybrid differential-discrete CA are a class of models in which nutrient diffusion
is modeled by using a differential equation usually assumed at a steady-state with
respect to the bacterial growth, while the biomass spreading is treated by CA rules
[45, 104, 105, 116, 117, 118, 119, 120, 121, 122, 123]. This type of model presents
the same features of CA models, thus it is characterized by the same drawbacks.
However, the use of finite difference methods for solving the nutrient field can lead
to a faster and more realistic model solution [104].

A first tentative of combining continuous models with discrete ones to
simulate complex biological structures, has been introduce by Ben-Jacob et al.
[124], who developed a detailed model of bacterial colony growth using CA
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systems. The model includes the following generic features: diffusion of
nutrients; movement of the bacteria; reproduction and sporulation; local
communication. Nutrient diffusion has been modeled by solving a diffusion
equation on a triangular lattice. Bacterial cells are divided in groups called
"walkers" which can move on a triangular lattice within an envelope. Each walker
is described by its location and an internal energy which affects its activity. The
walker can lose or gain energy; when this energy drops to zero the walker
becomes stationary while when this amount increases thanks to the consumption
of nutrients and reaches a threshold, the walker duplicates. The model involves
elements of cell-cell communication and chemotaxis and begins to reflect some of
the complexity of a microbial community.

Hermanowicz [101, 102, 103] developed a 2D model in which biofilm is
represented by a 2D array of "cells". Each model cell can be "occupied", i.e.
occupied by the biomass, or "empty", i.e. filled with water; mathematically it is
represented by a dynamic variable that changes according to prescribed rules. The
work is aimed at demonstrating how the CA approach is able to model the
formation of self-organized structures based on simple development rules on a
small scale and to evaluate the effect of the external environmental conditions.
Model cells occupied by biomass can growth, divide or detach themselves
according to a set of rules. Cell division depends on the probability of division,
evaluated as a function of the environmental condition, such as nutrient
concentration [103]:

P =
c

c+K
=

(c/K)

(c/K) + 1
, (2.26)

where:
P is the probability of division;
c is the local concentration of the limiting substrate [ML−3];
K is the Monod half-saturation constant [ML−3].

A dividing grid cell spawns a daughter cell which will occupy one of the eight
neighboring grid units with the following rules: if the grid cell is empty, the
daughter grid cell will occupy it; if there is more than one empty cells, the choice
is random; if all the neighboring cells are occupied the movement occurs in the
direction of least resistance. This direction is evaluated calculating the shortest
distance from each occupied grid cell to the biomass interface. In this case the
daughter cell will push a whole line of cells in the direction of the nearest biofilm
surface, to make place for itself. This mechanism of displacement resembles the
concept of biomass advective flux formulated by Wanner and Gujer [23], but in
this case the biomass does not move with a uniform velocity, but jumps in a
stochastic manner. Grid cells consume substrates that diffuse inside the boundary
layer, whose thickness is a model input, and the biomass, while substrate
concentrations remain constant outside the boundary layer. A matrix representing
nutrient concentrations is superimposed on the working space containing water
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and biomass. The concentration field can be described by a Poisson equation.
This equation is not solved numerically, but a modified version of the analytical
solution obtained for 1D biofilm and zero-order nutrient uptake kinetics is
introduced [103]:
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where:

CS is nutrient concentration maintained constant outside the boundary layer
[ML−3];

k is the uptake rate for zero-order kinetics [ML−3T−1];

di is a penetration distances [L].

Based on the idea that the resistance to mass transport in this case is a function
of the penetration distance, equation (2.27) is derived modeling the overall
resistance as a harmonic means of the resistances evaluated in the eight directions
of nutrient supply considered for each point inside the biofilm. Detachment occurs
randomly at a fluid/biomass interface with a probability increasing proportional
with the biofilm thickness. More precisely, the probability of cell erosion is
evaluated as a function of the hydrodynamic shear stress and biofilm cohesion.
This approach allows the consideration of the detachment of larger clusters.

Picioreanu et al. [104] introduced the first, so defined, hybrid-differential
approach suitable for modeling immobilized cells, growing in a gel matrix. The
model is still based on a CA approach for biomass spreading, but it evaluates the
substrate field by solving a common reaction-diffusion equation. This model tries
to overcome a common drawback of CA models deriving from the use of abstract
parameters such as units of resource or random-walk distance, and relies on
physical/chemical/biological parameters commonly used to describe biofilm
systems (yields, concentrations, rates, fluxes of nutrients). Moreover, the
combination of differential with discrete models allows the authors to predict the
correct time evolution of biofilm growth, concentrations, fluxes and conversion
rates, despite typical CA algorithms which work in a completely abstract time and
space. In this pioneer work, the state of the system is represented by using two
variables: the soluble limiting substrate concentration and the biomass density,
coupled to a matrix which stores information about the grid element occupation.
The model takes into account the three main processes characterizing biofilm
development in hydrostatic conditions (i.e. diffusion-reaction-growth) and is
aimed at demonstrating the validity of the new combined differential-discrete
approach in studying biofilm development. Substrate transport occurs only by
diffusion through a concentration boundary layer and further into the biofilm
matrix and it is expressed in dimensionless form by the following equation [104]:
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∂S

∂t
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)
− ρS (C, S) , (2.28)

where:
S = cS/cS0 is the dimensionless substrate concentration and cS0 is the substrate
concentration in the bulk liquid;
C = cX/cXm is the dimensionless biomass concentration and cXm is the
maximum biomass density in a colony;
D is the diffusion coefficient [L2T−1];
d is the characteristic length (in this case the bead diameter) [L];
X = x/d,= y/d, Z = z/d are the space coordinates in dimensionless form;
ρS(C, S) is the normalized rate of substrate consumption [T−1].

The solution of diffusion-reaction processes is uncoupled from the calculations
regarding the slower process of biomass spreading. In particular, equation (2.28)
is solved by using relaxation algorithms and maintaining the matrices of biomass
density and occupation state at a frozen level.

The biomass density is evaluated by solving the following equation [104]:

∂C

∂t
= ρX (C, S) , (2.29)

where:
ρX(C, S) is the normalized rate of biomass accumulation [T−1].

The occupation matrix is updated after solving the biomass balance. In
particular, the biomass is redistributed when the maximum density is achieved in
an elemental volume (x, y, z). The biomass is divided in two equal parts,
redistributed in the neighboring space with no preferential direction according to
simple CA rules (Figure 2.4). The pressure exerted by the biomass growing in the
biofilm depth generates displacement of cells towards the biofilm-liquid interface.
A single-cell release mechanism for detachment is considered only for the
biomass located outside the carrier sphere.

The model introduced in [104] has been applied later to simulate the biofilm
growth on solid flat surfaces [105]. Despite continuum models, biofilm structure
properties such as shape, porosity and density do not need to be initiated as input
data but are generated by the model itself. Simulations at different substrate
conversion/ transport rate ratios have been performed to evaluate their effect on
biofilm structure. The biofilm surface shape has been characterized by using
statistical quantities, such as biofilm surface enlargement, roughness, fractal
dimension of biofilm surface while biofilm structure complexity has been
evaluated as solids hold-up and biofilm compactness.

An extension of the previous model has been presented in [121, 122, 123] and
accounts for biomass growth and spreading, diffusive and convective transport and
transformation of substrates, flow around the biofilm structure. The 2D model
is fully quantitative, being based on first principles as Navier-Stokes equations,
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Figure 2.4: Schematic representation of the spreading rules adopted by a)
Picioreanu et al. [104,105]; b) Laspidou and Rittmann [117,118]. Figure adapted
from [96,108].

substrates mass balances and kinetic laws for biomass growth. The biomass growth
and spreading is modeled following the approach introduced in [104]. The mass
balance of the substrate is modeled by a convection-diffusion-equation and the
flow field is governed by the incompressible Navier-Stokes equations in laminar
regimes (2.10). The flow field and biofilm shape are interdependent since flow field
shears the biofilm surface, erodes the protuberances and regulates the substrate
concentrations at the biofilm-liquid interface. At the same time, changes in the
biofilm shape determine a new boundary condition for the flow field and thus,
different flow and substrate concentration. In this work a new strategy to follow
biofilm development in time is presented. It is based on the idea that there is a
clear separation of time scales in the biofilm growth. In this contest each process is
solved assuming all the other processes occurring at different time scales at steady
state.

Detachment has been incorporated later in the hybrid discrete-differential
approach previously described [45]. In this work, two known biofilm detachment
mechanisms, i.e. erosion (loss of small biofilm parts, eventually only cells, mainly
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from the biofilm surface) and sloughing (loss of massive biofilm chunks, often
broken from the substratum surface), have been modeled in a unitary way
assuming that detachment is caused by stress developed in the biofilm structure
[125]. The authors assumed that the biofilm detachment results from the
combined effect of liquid shear and biofilm strength. The liquid flow above the
biofilm exerts forces on the biofilm structure, both in normal and tangential to its
surface, so the biofilm structure is subjected to a state of stress. The biofilm is
assumed to be a homogeneous, isotropic, elastic material in the state of plane
strain and the criterion of maximum distortion energy is applied to evaluate where
the biofilm will break. In particular biofilm breakage is supposed to occur when
the equivalent stress, expressed as a function of the normal and shear stresses,
exceeds the cohesion strength.

Similarly to [104], Laspidou and Rittman [117, 118] developed a
multi-component cellular automaton model which combines the discrete
representation of the solid phase by CA with classical continuous methods for
soluble components. The model is based on the theory developed and quantified
in [126, 127] and considers three solid species including bacteria, EPS and inert
residual biomass, two soluble microbial products, one limiting-growth substrate
and an electron acceptor. They are all quantified in dimensionless form according
to [104]. The model reproduces in a 2D domain the growth of active biomass, the
EPS and utilization-associated products formation, the EPS hydrolysis to
biomass-associated products and their utilization as electron donors and the
endogenous decay of active biomass to residual dead cells. The same solution
strategy of Picioreanu et al. [104] is used for solving the substrate field, but two
new concepts are introduced for the cellular automaton algorithm: the composite
density CompDeni,j and the biofilm consolidation which is aimed at describing
the increases in biofilm density that occurs over time and deeper in the biofilm.
The composite density varies with time and space and it is calculated for each CA
cell according to equation (2.30):

CompDeni,j = Xi,j
a χa,max + EPSi,jepsmax +Xi,j

resχres,max, (2.30)

where:
Xi,j
a is the dimensionless density of the active biomass in i,jth cell;

Xres
i,j is the dimensionless density of the true residual inert biomass in i,jth cell;

EPSi,j is the dimensionless concentration of EPS i,jth cell;
χa,max is the maximum active biomass packing density [ML-3];
χres,max is the maximum of the true residual inert biomass packing density [ML-
3];
epsmax is the maximum EPS packing density [ML−3].

Each of the solid-phase components is computed from mass-balance
equations and redistributed according to the CA algorithm except for the residual
inert biomass, which is expected to accumulate only at the bottom of the biofilm.
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The spreading of active biomass and EPS is simulated as the division of mother
cells in daughter cells. In particular, the excess biomass is redistributed from one
cell or compartment when the composite density exceeds a maximum value. The
maximum composite density is specific for each compartment and increases over
time with bioage (age of each biofilm department) in order to simulate the
consolidation phenomenon. A consolidation ratio is calculated for each
compartment as an exponential function of biofilm age. It represents the degree of
maximum packing density. The excess biomass is redistributed when the sum of
the dimensionless density of the solid-phase components exceeds the
consolidation ratio. The model distributes the excess biomass identifying the
shortest path or path of least resistance (Figure 2.4). Moreover, a first-order
detachment is included for the outmost layer of the biofilm. The outputs of the
model have been used later to perform the biofilm stress analysis aimed at
evaluating the biofilm’s strength and resistance to detachment [119].

2.3.3 Individual Based Models

The term IbMs is addressed to a class of multidimensional models whose
objective is to describe the actions and properties of the individuals constituting
the bacterial population or community [128, 129, 130, 131]. IbMs use a
bottom-up approach and can also be classified as spatially structured population
methods. This type of model was born with the aim of surmounting all the
drawbacks deriving from the application of discrete rules, typical of the CA
approach, to biofilm spreading [3]. IbMs allow cells movement only on a
continuous set of directions and distances while CA models typically require that
biomass moves only in the finite number of lattice directions. Usually transport
and reaction of a solute species, local microbial growth rates are modeled using
differential approaches [132]. In all IbMs, bacterial cells represent the
fundamental entities and they are modeled as hard spheres in continuous 3D
space, each of them having a variable volume, mass and a set of mutable growth
parameters. These spherical agents act independently, analogously to how
individual bacterial cells behave within biofilms. IbM models do not specify any
global (population level) laws such as exponential population growth. The
behavior of the agents is defined explicitly with a set of rules that mimic the
behavior of individual bacterial cells, i.e. growth through the consumption of
substrates, reproduction through cell division, production of metabolites etc.

The first attempt to model bacterial colony growth by using this approach has
been proposed in [133, 134] and it has been used later to simulate a multispecies
biofilm [129]. The use of IbM for biofilms can be classified as a more realistic
approach that quantitatively incorporates the physiology of individual cells [135].
In [129], the authors introduced a fully quantitative IbM based on BacSim, which
consists of two main parts: one deals with the simulation of the growth and
behavior of individual bacteria as autonomous agents; the other one deals with the
simulation of substrate and product reaction and diffusion. According to [104],
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the bacterial growth has been simulated assuming the diffusion process at a
pseudo-steady state (between each biomass spreading iteration) since biofilm
growth is usually a much slower process than diffusion of substrates into the
biofilm. Each cell performs "actions" as a result of the environmental conditions
and its internal state. It grows by consuming the substrates and divides when a
certain volume is reached; it moves as a consequence of being pushed by its
neighbors [136]. The model considers the random variation of cell parameters, the
maximal uptake rate and the volume-at-division, by using a Gaussian distribution
with a coefficient variation (CV) of 10%. The pressure buildup due to the growth
of biomass is released by maintenance of a minimum distance between the
neighboring cells. For each cell, the vector sum of all positive overlap radii with
the neighboring cells is calculated and then the position of the cell is shifted in the
direction opposite to this vector. Therefore, the biomass packing in the biofilm is
defined by the shoving parameter Kshov which represents the spacing among
cells. When a cell reaches a critical volume, it divides resulting in the creation of
another cell, the "daughter", and the mass of the original cell is distributed slightly
unevenly between these two spheres. The random choice of the direction for the
placement of daughter cells and the uneven division of mass between cells makes
the model stochastic. The substrate concentration is governed by a
reaction-diffusion equation which is solved by using a relaxation method. The
uptake rates calculated for each bacterium occupying a certain grid element of the
substrate field are averaged on an area percentage basis. Despite the unilateral
shoving mechanism adopted in [133], Kreft et al. [129] introduced a mutual
mechanism which minimizes the effect of a bias making the shoving independent
of the sequence with which the bacteria are accessed. This result is achieved by
inverting the sequence of who shoves whom every 10 steps. The performed
simulations revealed that the mutual scheme is better in avoiding overlaps and
relocating cells and helps in reducing sequential execution biases. The BacSim
framework has been compared with the population-level model introduced by
Picioreanu et al. [104, 105]. The simulations show similar results in principle, due
to modeling the same physical processes, but differ in details of biofilm shape and
growth of minority species. In particular, the IbM method results better suited to
the description of multispecies systems since CA models determine the
production of too much internal mixing of species within a colony or the
generation of anisotropic colonies.

The IbM approach introduced by Kreft et al. [129] has been used later to
model the mechanism of production and spreading of extracellular polymeric
substances [137, 138] and to test several evolutionary and ecological hypotheses
[139]. In [137], the EPS formation is stoichiometrically coupled to growth; the
EPS produced is first bound to the bacterial agent forming a protective layer and
then excreted as a separate agent that will participate in the shoving mechanism
along with the bacterial agents. In [139], the IbM approach has been applied to
study the development of altruistic behavior by bacteria in biofilms.

The very detailed level of biofilm description characterizing IbMs can
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represent a disadvantage in modeling systems with large-scale heterogeneity. In
order to extend the spatial scale of the previous IbMs, Picioreanu et al. [130]
introduced a multidimensional particle-based modeling approach which considers
the presence of larger biomass particles, but keeps the rules for biomass
redistribution and shoving introduced in [129]. In this model, the biofilm biomass
is divided in spherical particles containing only one type of active biomass and a
fraction of inert biomass resulting from the decay of all active biomass types. The
size of these spherical agents is chosen to represent a cell cluster of similar cells
and no variability in metabolic parameters is included for all biomass particles of
the same type. Biomass division and spreading is based on the same mechanism
introduced in [129]. A simplified biomass detachment model is introduced: it
consists of removing every particle, which is shifted above an imposed biofilm
thickness limit, due to a shoving step. The substrate field is governed by a
dynamic-state diffusion reaction equation, which is uncoupled from the solution
of biomass evolutions, as stated in [105]. A steady-state solution of the partial
differential equation for mass balances of soluble substrates in the biofilm is
found by a nonlinear multigrid algorithm. The numerical simulations reveal that
the IbM framework for cell transport describes its continuum counterpart at least
in a 1D case.

The modeling approaches introduced in [104, 105, 129, 130], have been
integrated to provide a framework that defines the structure for multidimensional,
multispecies dynamic modeling of biofilm systems [131]. This IbM takes into
account the concept of structured biomass which is constituted by multiple
bacterial species, inert biomass and EPS. Three spatial scales are considered: a)
individual scale, which deals with the behavior of biomass agents; b) biofilm
scale, which works on a community level; c) system scale, which takes into
account the interactions between the bulk liquid compartment and the biofilm.
According to Picioreanu et al. [130], biomass particles can represent either a
single cell or a cluster of cells of the same species. Each biomass particle is
correlated to a pDocument which defines the number and type of particulate
species constituting the agent. The mass of each particulate species varies
according to a bioconversion equation and determines changes in the agent
volume. The agent duplicates when the maximum particle radius is reached. The
masses of all particulate species contained in the dividing agent are then
redistributed between the two resulting agents. The EPS production and excretion
are modeled according to [137] (Figure 2.5). In the case of EPS decay or
inactivation of the bacterial biomass, the framework includes net reduction of the
biofilm volume. A multidimensional extension of the method used in [23] is
introduced to study detachment and other biomass losses. In particular, a
continuous detachment speed function is used to model both erosion and
sloughing, as extensively described in [140]. The computation of solute
concentration fields is decoupled from biomass dynamics, as adopted in
[104, 105, 129, 130]. The solute concentration field is computed by a multigrid
solver, as previously applied in [130]. Bulk concentration of solute species can be:
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constant, in which case the bulk liquid is assumed to be an infinite and constant
supply of the solute; intermittent, by alternating feast and famine cycles, or can be
computed from a mass balance equation applied to the whole system.

Figure 2.5: Spreading mechanisms adopted by: a), c) Xavier et al. [131]; b) Lardon
et al. [141]. Figure adapted from these two papers.

An alternative method to treat EPS has been introduced by Alpkvist et al.
[97]. In particular, the authors used a continuous representation of EPS combined
with an IbM of individual bacteria. According to [33, 97], EPS is modeled as a
viscous fluid, which is well justified by both experimental facts and physical
grounds. On the other hand, the IbM approach is used to model the behavior of
each bacterial cell, the local interactions between different microbial species and
individual variation of microbial cells. The movement of EPS and cells on a
global level in the biofilm is governed by an advection speed which is assumed to
follow the Darcy’s law. At the same time, the individual cells (biomass spheres)
undergo a shoving mechanism when they get too close to each other; the cell
shoving introduces small local deviations in the flow field. The model has been
applied to study the consolidation process in mature biofilms. This process seems
to derive from the presence of a negative pressure in the lower region of the
biofilm which is generated by EPS and cell degradation processes and results in
cell transport towards the substratum.

A new modeling platform dedicated to IbM of microbial communities has
been recently introduced by Lardon et al. [141]. In this work, the authors have
tried to combine most features of previous models and incorporate various
improvements in order to provide a common basis for further developments. In
order to address this aim, an open-source software called individual-based
Dynamics of Microbial Communities Simulator (iDynoMiCS) has been
developed. The iDynoMiCS structure emerges from the combination of the
previous modeling approaches but presents inherent differences. Primarily
iDynoMiCS allows for the introduction of non-bacterial agents (archea, protozoa,
algae or fungi). Microbial agents are structured in compartments including all
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intracellular components (active or inactive biomass, storage compounds, etc.),
bounded by an outer layer of capsular EPS. All the agents are updated in a
random order, which is changed for each time step in order to remove any bias.
An individual agent can carry out a different suite of reactions than other
individuals of the same species. The EPS excretion is represented by a particulate
method: the EPS produced is continuously released into the environment and
distributed to the EPS particles of the same type, present in the neighborhood of
the EPS-producing agent; if no such agents are found, a new EPS particle is
created. To recreate a continuum representation of EPS, smaller radii of EPS
particles are adopted (Figure 2.5). According to [33, 97], a pressure field to model
biomass spreading or consolidation, is introduced. As all IbMs, iDynoMiCS is
affected by stochasticity in the choice of the initial agent locations and masses, the
cell division threshold volume, the cell death threshold volume, the daughter cell
orientation and size, the excretion direction of new EPS particles and the order of
agents update. During the last decade, the IbM approach has been widely used to
predict several structural features of microbial biofilms and the results match
experimental observations. The IbM approach has been used to evaluate the
biomass production/consumption and transport of biofilm for microbial fuel cells
[142]. The effect of microbial motility on biofilm morphology has been analyzed
in [143] and the concepts of IbM have been applied to describe and optimize a
biofilm and granular reactor [144].

2.4 Discussion

Due to biofilm involvement in a large range of human activities and natural
processes, developing an effective mathematical modelling approach may be
essential for elucidating the processes involved in biofilm formation and
maturation, as well as for developing a strategy to minimize the biofilm related
risks and exploit their technical possibilities. The heterogeneity of biofilm
structure and the interdependence of physical/chemical/biological processes,
occurring at different time and space scales, make mathematical modeling of
biofilm growth and structure a special challenge for researchers.

A detailed overview of the wide range of modeling approaches developed
during the last decades has been presented above. Selecting an appropriate model
may represent a challenging issue for both researchers and practitioners [145].
The scope and output of the model constitute a discriminator factor: practitioners
are interested in developing models able to predict quantitatively the performance
and responses of biofilm reactors; researchers consider modeling as a powerful
tool to understand the fundamental mechanisms regulating the formation and
performance of biofilms. Therefore, practitioners aim at simpler biofilm models,
which can be easily calibrated by using the data provided by experimental
activity, while in research the degree of complexity is increasing over time.

On the basis of the model classification proposed in this work, general
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guidelines for the selection of the most suited modeling tool, based on the specific
needs of the model user, are provided. In particular, two general questions are
answered in the following sections, which should cover the doubts arising in
choosing a modeling approach: i) when to use 1D, 2D or 3D models? ii) Should
Continuum or Discrete approach be used? However, there is no general answer to
these questions because the use of a specific modeling tool is objective depending.
For instance, different environmental conditions produce a variety of structurally
very different biofilms; some mathematical models are able to capture this
heterogeneity; others, based on simplifying assumptions, are not. The extent to
which simplifications and idealizations must or can be introduced depends on the
particular purpose of the mathematical model [146].

2.4.1 When to use 1D, 2D or 3D models?

As widely described above, 1D models consider only the direction perpendicular
to the substratum: this represents a valid simplification when vertical gradients of
variables and parameters are orders of magnitude higher than those in the
directions parallel to the carrier surface [140]. This hypothesis verifies in the case
of uniform bulk liquid conditions over the whole substratum area, when the
substratum area is regular and large enough compared to biofilm thickness or for
smooth biofilm surfaces. Since this applies to many (not all) of engineering
biofilm systems, 1D models have been widely used to predict the whole process
dynamics of biofilm reactors and are increasingly used as educational material in
engineering curricula [25]. In addition, the choice of 1D models may reflect the
need of keeping the computational effort at a low level. An inherent limitation of
1D models rely on the simplified modeling of bulk liquid as a completely mixed
compartment. The calculations regarding the flow field are neglected as well as
the interactions between liquid flow and biofilm surface.

However, recent improvements in microscopy and imaging techniques have
revealed that numerous biofilms are not uniform and spatial irregularities in real
biofilms cannot be interpreted using a conceptual model of biofilms in which
microorganisms are uniformly distributed in a continuous matrix of extracellular
polymers [73]. Biofilms have been recognized as complex 3D heterogeneous
entities characterized by a highly porous structure filled with fluid which supplies
nutrients to microorganisms and erodes biofilm surface resulting in removal of
biomass. This spatially heterogeneous architecture can induce complex flow
patterns and affect mass transfer [2]. 1D models result inappropriate to describe
the dynamics of biofilm activity when structural dependent factors such as
external mass transfer coefficient or porosity vary significantly with time.
Therefore, 2D and 3D models have been developed to capture this heterogeneity.
Multidimensional models are able to evaluate the substrate removal and biomass
production rates of dynamic biofilm systems, but they can be used also to evaluate
the interaction among biofilm shape, fluid flow, biomass decay and detachment,
by taking into account the fluid dynamics modeling of the liquid phase and the
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effect of biofilm geometry on the external mass transfer rates. They are suitable to
study the effect of different environmental conditions on biofilm structure and to
evaluate the multidimensional interactions between microbial communities, such
as microbial segregation. 2D models are not representative of a 3D domain where
flow can by-pass dense biofilm structures [2]. However, simulations performed by
Eberl et al. [3] highlighted that in most cases, 2D and 3D models lead to
equivalent external mass transfer coefficient. On the other hand, 3D models can
be useful for biofilms consisting in isolated colonies where advective transport
becomes not negligible. The use of highly accurate 2D and 3D models requires a
detailed description of the biofilm structure at a meso-scale, which can be
accomplished only by using the modern investigation techniques, and the solution
of a nonlinear system of partial differential equations in a complex domain. In
particular, multidimensional biofilm models have been singularly used as research
tools, where an accurate resolution of the processes occurring inside the biofilm is
required, and their application as engineering tools is limited by the high spatial
resolution and the level of detail required for model calibration.

2.4.2 Should continuum or discrete approach be used?

Continuum models represent a valid alternative to the discrete approach since all
the drawbacks that characterize discrete models seem to arise from the
discreteness of the spreading mechanism adopted [3]. As above described, a
continuum biofilm model: i) is characterized by a continuous representation of
biomass; ii) is based on differential equations widely used in physics to model the
dynamics of biomass spreading and iii) generates deterministic solutions. The
main advantages of continuum biofilm descriptions derive from the use of the
powerful framework of partial differential equations. Indeed, the use of
differential calculus allows achieving quantitative results for substrate transport
that can be compared with data measured in real systems.

The 1D continuum models persist today as widely used methods to describe
macroscopic conversions and for interpreting and predicting biofilm reactors
performance [136]. The 1D dynamic multispecies model of Wanner and Reichert
[47] implemented in the software AQUASIM, is up to date the most widely used
biofilm model applied to engineering design, as it is sufficiently accurate for
predicting global mass conversion rates for a full bioreactor. However, 1D models
do not give any knowledge on the local spatial architecture of the biofilm and
multidimensional continuum models have been developed with the aim of
covering this gap. The main challenges in developing multidimensional
continuum models rely on the presence of moving boundaries, i.e. the
biofilm-fluid interface, fluid flow, non-linear growth kinetics and discontinuous
gradients across the boundary biofilm-fluid interface [88]. In particular, the use of
multidimensional continuum models implies high computational efforts and
sometimes requires simplifying assumptions to solve the differential equations
describing biofilm evolution on irregular domains. Flow field calculations are
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usually much more computationally expensive than simulations of biofilm
growth; therefore bulk flow hydrodynamics has been usually neglected in many
multidimensional continuum models. Moreover, a variety of resolution methods,
all of them characterized by significant computational efforts, for solving elliptic
equations on irregularly shaped domains in conjunction with moving interfaces
have been investigated. The formulation and derivation of continuum models
require a comprehensive mathematical skill, a higher computational effort
compared to discrete methods and the computational algorithms could be
sometimes not trivial [97]. Despite the high computational efforts,
multidimensional continuum models are more convenient than discrete
approaches when applied to mechanical problems. Indeed, in this case discrete
models can hardly describe the global relationships between the individuals
constituting the biofilm.

On the other hand, discrete models are able to represent the typical
multidimensional structural heterogeneity of biofilm in good agreement with
experimental expectations, but they generate computational results that include
elements of randomness. Their output depends on the sequence of execution of
methods on the discrete objects and introduces stochastic effects into the
solutions. In the case of IbMs, the stochasticity manifests in two occasions: (a) for
the random choice of direction for the placement of "daughter" particles and (b)
for the uneven division of mass between in-cell division [136]. For CA, the rules
used for biomass spreading are sometimes formulated arbitrary and might lead to
aesthetically driven, rather than to physically motivated, model formulation [3].
Generally they are lattice dependent and not invariant to changes of coordinate
system. Moreover the same initial conditions can lead to different model outputs
and error analyses are non-trivial [97]. Therefore, for a discrete model, several
runs with the same initial state are needed to average the stochastic effect before
conclusions are drawn.

Despite the aforementioned disadvantages, both discrete approaches, CA and
IbM represent powerful modeling tools which have been applied not only in
ecology, but in many other disciplines such as social, economical, demographical
and political sciences. Cellular automaton models avoid the mathematical and
computational burden of continuous models, and are more straightforward [108].
Similarly to multidimensional continuum models, they work on a larger scale than
IbMs, which are usually used for studies at the scale of micrometers to
centimeters and therefore are computationally more intensive. When CA are
applied to the case of single species biofilms, they produce similar results of
continuum models; while in the case of multispecies biofilms, these algorithms
generate a lot of internal mixing within the colony. However, over the years,
several types of spreading rules have been adopted in order to minimize the excess
of mixing [39, 108, 117]. According to [96], CA are especially suitable to model
old and aged biofilms, characterized by the presence of cavities and experiencing
the phenomenon of consolidation.

IbMs started to be developed with the aim of simulating individual or
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localized behaviors which are usually not adequately described by
population-average models. These models are mainly addressed to capture the
micro-scale level and to describe how individual processes, interactions and local
variability affect the macroscopic structure of biofilms. One of the main
drawbacks deriving from the application of this approach, rely on the assumption
of individual microorganisms as hard spheres and on the use of a predetermined
shoving parameter to model the direction of the biomass movement and porosity.
Furthermore information on the individual heterogeneity of growth parameters,
the volume fraction occupied by cells in colonies and the biomass spreading
mechanism adopted by different microorganisms are sometimes missed. In
addition, despite their computational demand, the IbM approach can incorporate
rare species or rare events, it can make a distinction between spreading
mechanisms adopted by different bacteria and operates at the highest spatial
resolution level relevant in a biofilm [147]. IbMs represent a big promise in
modelling multispecies biofilms and in incorporating concepts such as cell-to-cell
signaling, quorum sensing and cellular motility.

2.5 Conclusions

In this work, a comparison of the two types of approach, namely the continuum
and discrete, used to simulate the development of biofilm structure has been
conducted in order to elucidate the main advantages/disadvantages deriving from
the application of each approach.

Continuum models benefit from the framework of differential calculus and
represent a valuable tool to understanding biofilm processes in a quantitative and
deterministic way. However, 1D continuum models assume a planar geometry and
therefore, cannot take into account the biofilm spatial heterogeneity. On the other
hand, the formulation of multidimensional continuum models requires a
comprehensive mathematical skill and sometimes, very costly or demanding
numerical solutions. Discrete models are more recent in time in biofilm research
and are based on the idea that biofilms can be characterized as stochastic living
systems. These models have shown their capability of representing biofilm
structure heterogeneity in good agreement with experimental results. However,
they introduce elements of randomness, mostly in modeling the spreading of
biomass and leading to shapes resembling biofilm structure but that may not
simulate reality exactly.

All biofilm models constitute valuable tools in predicting biofilm growth and
structure and their choice depends mostly on the situation that needs to be
modeled. To date, extensive experimental activities are being carried out to
understand how biofilm grows and interacts with the environment. Evaluating the
complexity of intracellular interactions and communications represents one of the
future challenges in biofilm research. Only the collaboration among researchers
with different expertise will lead to the definition and development of new
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modeling approaches, able to take into account the advances in biofilm ecology.



Chapter 3

Analysis and simulations of the initial
phase in multispecies biofilm formation

The work presents a mathematical modelling approach to study dynamic
competition during the attachment phenomena in the initial phase of biofilm
growth. Biofilm development is described by a set of nonlinear hyperbolic partial
differential equations. Diffusion of substrates through biofilm is modeled by a set
of semilinear parabolic partial differential equations. The two sets of equations
are mutually connected. The resulting mathematical problem is a free boundary
value problem, which is essentially hyperpolic. A characteristic-like method is
introduced to convert differential equations into integral equations. Fixed-point
theorem is used to obtain existence, uniqueness and properties of solutions. The
model has been applied to the competition of heterotrophic-autotrophic bacteria
in a multispecies biofilm. The effects of different attachment rates on the biofilm
dynamics including biofilm thickness, volume fractions of bacterial species and
substrate concentration trends have been investigated. The simulations show that
the different attachment rates influence biofilm thickness, of course. However, the
volume fractions of bacterial species mainly depend on biofilm internal dynamics
and substrate concentration trends. The bulk concentrations of microbial species
play a relative important role only in the outermost layers of biofilm.

This chapter was published as:
D’Acunto, B., Esposito, G., Frunzo, L., Mattei, M.R. and Pirozzi, F. (2013). Analysis and
simulations of the initial phase in multispecies biofilm formation. Communications in Applied and
Industrial Mechanics, 2013, pp. 1-23, DOI: 10.1685/journal.caim.448.
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3.1 Introduction

Biofilms are commonly defined layer like aggregations of microorganisms and are
involved in a variety of scenarios including pollution, corrosion, biofouling,
biomedical applications, bacterial growth in water distribution systems, attached
growth systems for wastewater treatment. Biofilm metabolism is characterized by
some inherent features that provide several advantages and some challenges for
applications. Indeed, a single biofilm can exibit varying environmental and kinetic
characteristics, that is, it can include a variety of microbial groups contributing to
the conversion of different organic and inorganic substrates; biofilm cells are at
least 500 times more resistant to antimicrobial agents [31] and benefit from
interspecies cooperation.

Biofilm development is determined by "positive" processes, like cell
attachment, cell division, and polymer production, which leads to biofilm volume
expansion, and "negative" processes, like cell detachment and cell death, which
contribute to biofilm shrinking. The main biofilm expansion is due to bacterial
growth and extracellular polymer production. The nutrients necessary for biofilm
growth are dissolved in the bulk liquid and are transported by molecular diffusion
first through the boundary layer, where the external mass transfer resistance is
concentrated, and then through the biofilm matrix. The external fluid flow
regulates biofilm growth by establishing the concentration of substrates and
products at the liquid-solid interface. At the same time the fluid flow shears the
biofilm surface, eroding the protuberances. So biofilm structure results from the
interplay of different interactions, such as mass transfer, conversion rates and
detachment forces. An accurate modeling of such a system have to take into
account all of these factors, since these factors strongly affect the overall
performance of biofilm-based systems [19].

The transport of microorganims to and from the biofilm (attachment and
detachment) is particularly important since it defines the microbial ecology of the
biofilm and plays a crucial role in the start up of biofilm reactors. In particular,
biofilm formation occurs when specified bacterial species, able to make the first
colonization of substratum surface, attach to the surface and start producing an
extrapolymeric matrix that will allow the attachment of other microbial species
[32]. This bacterial adhesion can be performed only by few microbial species and
it is especially rapid and specific if the surface in question is itself a nutrient.
After the first colonization, a thin layer of biofilm constitutes and the flux of micro
organisms from bulk liquid to biofilm continues playing a crucial role in both
biofilm development and in competition of microbial species for substrates and
place.

The attachment process is influenced by both physical and biological factors,
such as bulk liquid characteristics in terms of kind and concentration of microbial
species, flow velocity and turbulence, geometry of the substratum. Therefore, the
attachment flux can assume different values determining different biofilm
development pathways. At the same time, the growth of the existing thin layer of
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biofilm is influenced by substrate concentrations and coupled with attachment flux
determines the overall biomass volume increase.

Mathematical modelling of the attachment process represents a useful tool to
evaluate this phenomenon and to predict the structural biofilm development.
Many of biofilm models developed during the last decades are able to reproduce
the complex interactions existing between the main processes, including cell
attachment, involved in the formation of biofilm structure. Biofilm models have
undergone a temporary evolution and mostly differ on the way biomass spreading
is treated. Continuum models [6, 23, 27, 47, 64] consider biomass as an unicuum
and are based on conservation principles. These studies are mostly centered on the
biofilm growth dynamics including the biofilm thickness and spatial distribution
of microbial species and substrate concentration. These continuum models can be
related to the underlying description offered by models at the microscopic scale as
documented in [148]. Later, discrete models have been developed to reproduce
biofilm spatial heterogeneities by using simple rules [105, 109]. These models can
capture the various biofilm growth patterns observed in experiments and strongly
suggest that the biofilm structure is largely determined by the surrounding
substrate concentration. In this work a mathematical model based on a continuum
approach and able to describe the attachment process during biofilm growth is
presented. In particular, the objectives of this study include:

- to propose a mathematical modelling approach to study population dynamics
during the attachment phenomena in the initial phase of biofilm growth;

- to provide a qualitative analysis to the solutions of the corresponding free
boundary value problem;

- to develop numerical simulations to illustrate the model.

3.2 Initial phase of biofilm formation

Consider a multispecies biofilm formed by n microbial species. 1D model of
biofilm growth, based on the continuum description, is governed by the following
equations [6, 23, 27, 47, 64],

∂Xi

∂t
+

∂

∂z
(uXi) = ρirM,i(z, t,X,S), i = 1, ..., n, 0 ≤ z ≤ L(t), t > 0, (3.1)

∂u

∂z
=

n∑
i=1

rM,i = G(z, t,X,S), 0 < z ≤ L(t), t > 0, (3.2)

L̇(t) = u(L(t), t) + σ(t), t > 0, (3.3)
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∂Sj
∂t

−
∂

∂z
(Dj

∂Sj
∂z

) = rS,j(z, t,X,S), 0 < z < L(t), t > 0, j = 1, ...,m, (3.4)

where:
z is the biofilm growth direction, assumed perpendicular to substratum;
fi(z, t) is the volume fraction of microbial species i,

∑n
i=1 fi = 1;

ρi denotes constant density;
Xi(z, t) = ρifi denotes the concentration of microorganism i, X = (X1, ..., Xn);
u(z, t) is the velocity of the microbial mass;
Sj(z, t) denotes the concentration of substrate j, j = 1, ...,m, S = (S1, ..., Sm);
rM,i(z, t,X,S) is the specific growth rate;
L(t) denotes biofilm thickness;
σ(t) is the biomass flux from bulk liquid to biofilm;
Dj denotes the diffusivity coefficient of substrate j;
rS,j(z, t,X,S) is the conversion rate of substrate j.

3.2.1 Free boundary value problem

As outlined in Section 3.1, we want to discuss the free boundary value problem
for the initial phase of biofilm development. We consider the situation where a
thin layer of biofilm has been already formed. This leads to assume a strictly
positive initial thickness for the biofilm: L(0) > 0. The case where L(0) = 0 was
discussed in [30]. In addition, it is assumed that there is no biomass flux at the
support and this implies u(0, t) = 0. Therefore, the following initial conditions
will be associated to equations (3.1)-(3.3)

Xi(z, 0) = ϕi(z), i = 1, ..., n, 0 ≤ z ≤ L(t), (3.5)

u(0, t) = 0, t > 0, (3.6)

L(0) = L0 > 0, (3.7)

where L0 denotes the initial thickness of biofilm and ϕi(z), i = 1, ..., n, the initial
concentrations of microbial species.

The initial phase of biofilm growth is strongly influenced by the attachment.
This process can be defined as the immobilization of cells suspended in the bulk
liquid to biofilm or substratum. Mathematically, the attachment is modelled as a
flux, usually denoted by σ. Moreover, the biofilm development in this phase also
depends on substrate availability, since a thin layer of biofilm has been already
constituted. For mature biofilms, the most significative biomass flux occurs from
biofilm to bulk liquid. This biological process, known as detachment, mostly
depends on hydrodynamic conditions and biofilm thickness. However, in the
initial phase, attachment is the prevailing process. So, σ is assumed to be a strictly
positive function of time in this work. The attachment affects microbial species
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distribution into biofilms and can even introduce new species existing in the bulk
liquid in the already developed biofilm structure. So, the following boundary
condition is needed [23],

Xi(L(t), t) = ψi(t), i = 1, ..., n, t > 0, (3.8)

where ψi(t) denotes the concentration of the microbial species i in the bulk liquid.
Finally, we introduce the initial-boundary conditions for equations (3.4). The

initial conditions are quite general

Sj(z, 0) = Sj0(z), 0 ≤ z ≤ L0, j = 1, ...,m. (3.9)

Moreover, no flux boundary conditions are assumed at the biofilm support and
prescribed boundary condition on the free boundary

∂Sj
∂z

(0, t) = 0, Sj(L(t), t) = SjL(t), t > 0, j = 1, ...,m, (3.10)

Sj0(L0) = SjL(0), Sj0(0) = 0. (3.11)

The value assumed by substrate concentrations at biofilm/bulk-liquid interface
take into account the effect of mass-transport resistance. Equations (3.10)2
determine the substrate concentration trends into biofilm and reflect the bulk
liquid substrate availability. Microbial growth rate depends on substrate
concentration so the boundary conditions strongly affect bacterial species
distribution, determining the predominance of some bacterial species over others.

The free boundary problem considered in this work is summarized by equations
(3.1)-(3.4) with initial-boundary conditions (3.5)-(3.11).

3.3 Characteristic-like method

When 0 ≤ z0 ≤ L0, we consider the characteristic-like lines for system (3.1), fig.
3.1,

z = z(z0, t), 0 ≤ z0 ≤ L0, t > 0, (3.12)

defined by

∂z

∂t
(z0, t) = u(z(z0, t), t), z(z0, 0) = z0, 0 ≤ z0 ≤ L0, t > 0. (3.13)

When z0 = L(t0)(> L0), 0 < t0 ≤ t, we consider the characteristic-like lines, fig.
3.1,

z = z(L(t0), t) = c(t0, t), 0 < t0 ≤ t, t > 0, (3.14)

defined by

∂c

∂t
(t0, t) = u(c(t0, t), t), c(t0, t0) = L(t0), 0 < t0 ≤ t, t > 0. (3.15)
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Figure 3.1: Characteristic-like lines

Using (3.13) in (3.1) gives the following system of nonlinear differential
equations

d

dt
Xi(z(z0, t), t) = Fi(z(z0, t), t,X,S), i = 1, ..., n, 0 ≤ z0 ≤ L0, t > 0,

(3.16)
with initial conditions

Xi(z(z0, 0), 0) = Xi(z0, 0) = ϕi(z0), 0 ≤ z0 ≤ L0, i = 1, ..., n, (3.17)

where

Fi = ρirM,i −Xi

n∑
h=1

rM,h = Fi(z, t,X,S), i = 1, ..., n. (3.18)

Using (3.15) in (3.1) gives the following system of nonlinear differential
equations

d

dt
Xi(c(t0, t), t) = Fi(c(t0, t), t,X,S), i = 1, ..., n, 0 < t0 ≤ t, t > 0, (3.19)

with initial conditions

Xi(c(t0, t0), 0) = Xi(L(t0), t0) = ψi(t0), 0 < t0 ≤ t, t > 0, i = 1, ..., n.
(3.20)

Differential system (3.16)-(3.17) is equivalent to the integral system⎧⎨
⎩

Xi(z(z0, t), t) = ϕi(z0) +
∫ t
0 Fi(z(z0, τ), τ,X(z(z0, τ), τ),S(z(z0, τ), τ)) dτ,

i = 1, ..., n, 0 ≤ z0 ≤ L0, t > 0,
(3.21)

which incorporates the initial conditions (3.17).
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Differential system (3.19)-(3.20) is equivalent to the integral system⎧⎨
⎩

Xi(c(t0, t), t) = ψi(t0) +
∫ t
t0
Fi(c(t0, τ), τ,X(c(t0, τ), τ),S(c(t0, τ), τ)) dτ,

i = 1, ..., n, 0 < t0 ≤ t, t > 0,
(3.22)

which incorporates the initial conditions (3.20).
Solving systems (3.21) and (3.22) gives Xi along the lines (3.12) and (3.14),

respectively. Therefore, the complete resolution requires the knowledge of those
lines. Now, the integral equations for lines (3.12) and (3.14) are derived. From
(3.13)

z(z0, t) = z0 +

∫ t

0
u(z(z0, τ), τ) dτ, 0 ≤ z0 ≤ L0, t > 0, (3.23)

From (3.2)

u(z(z0, t), t) =

∫ z(z0,t)

0
G(ζ, t,X(ζ, t),S(ζ, t)) dζ, (3.24)

where equation (3.6) has been employed. By considering the change of variable
ζ = z(ζ0, t), equation (3.24) becomes

u(z(z0, t), t) =

∫ z0

0
G(z(ζ0, t), t,x(ζ0, t), s(ζ0, t))

∂z

∂ζ0
(ζ0, t) dζ0, (3.25)

where the following notations have been used

x(ζ0, t) = X(z(ζ0, t), t), s(ζ0, t) = S(z(ζ0, t), t). (3.26)

Inserting equation (3.25) into (3.23) gives the integral equation for z(z0, t)⎧⎨
⎩

z(z0, t) = z0 +
∫ t
0 dτ

∫ z0
0 G(z(ζ0, τ), τ,x(ζ0, τ), s(ζ0, τ))

∂z
∂ζ0

(ζ0, τ)dζ0,

0 ≤ z0 ≤ L0, t > 0,
(3.27)

which incorporates the initial condition z(z0, 0) = z0. Moreover, since ∂z/∂z0 is
involved, we also need

∂z

∂z0
(z0, t) = 1 +

∫ t

0
G(z(z0, τ), τ,x(z0, τ), s(z0, τ))

∂z

∂z0
(z0, τ) dτ, (3.28)

which follows easily from (3.27).
Consider the characteristic-like lines when z0 > L0. From (3.15)

c(t0, t) = L(t0) +

∫ t

t0

u(c(t0, τ), τ) dτ, 0 < t0 ≤ t, t > 0. (3.29)



52

From (3.2)

u(c(t0, t), t) =

∫ z(L0,t)

0
G(ζ, t,X(ζ, t),S(ζ, t)) dζ (3.30)

+

∫ c(t0,t)

z(L0,t)
G(ζ, t,X(ζ, t),S(ζ, t)) dζ,

By considering the change of variable ζ = z(ζ0, t) in the first integral and ζ =
c(τ0, t) in the second one

u(c(t0, t), t) =

∫ L0

0
G(z(ζ0, t), t,x(ζ0, t), s(ζ0, t))

∂z

∂ζ0
(ζ0, t) dζ0 (3.31)

+

∫ t0

0
G(c(τ0, t), t,x(τ0, t), s(τ0, t))

∂c

∂τ0
(τ0, t) dτ0,

where notations (3.26) have been used, and in addition

x(τ0, t) = X(c(τ0, t), t), s(τ0, t) = S(c(τ0, t), t). (3.32)

Inserting equation (3.31) into (3.29) gives the integral equation for c(t0, t)

c(t0, t) = L(t0) +

∫ t

t0

dτ

∫ L0

0
G(z(ζ0, τ), τ,x(ζ0, τ), s(ζ0, τ))

∂z

∂ζ0
(ζ0, τ) dζ0

(3.33)

+

∫ t

t0

dτ

∫ t0

0
G(c(τ0, τ), τ,x(τ0, τ), s(τ0, τ))

∂c

∂τ0
(τ0, τ) dτ0, 0 < t0 ≤ t, t > 0,

which incorporates the initial condition c(t0, t0) = L(t0). Another version of this
equation will be provided in Section 3.4, where also ∂c/∂t0 will be derived.

Finally, by using notations (3.26) and (3.32), equations (3.21) and (3.22) are
rewritten as⎧⎨

⎩
xi(z0, t) = ϕi(z0) +

∫ t
0 Fi(z(z0, τ), τ,x(z0, τ), s(z0, τ)) dτ,

i = 1, ..., n, 0 ≤ z0 ≤ L0, t > 0,
(3.34)

⎧⎨
⎩

xi(t0, t) = ψi(t0) +
∫ t
t0
Fi(c(t0, τ), τ,x(t0, τ), s(t0, τ)) dτ,

i = 1, ..., n, 0 < t0 ≤ t, t > 0.
(3.35)

3.4 Free boundary

Consider free boundary equation (3.3), rewritten as

L̇(t0) = u(L(t0), t0) + σ(t0) = u(c(t0, t0), t0) + σ(t0). (3.36)
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Use equation (3.31)

L̇(t0) = σ(t0) +

∫ L0

0
G(z(ζ0, t0), t0,x(ζ0, t0), s(ζ0, t0))

∂z

∂ζ0
(ζ0, t0) dζ0 (3.37)

+

∫ t0

0
G(c(τ0, t0), t0,x(τ0, t0), s(τ0, t0))

∂c

∂τ0
(τ0, t0) dτ0.

Hence,

L(t0) = L0 +

∫ t0

0
σ(θ)dθ (3.38)

+

∫ t0

0
dθ

∫ L0

0
G(z(ζ0, θ), θ,x(ζ0, θ), s(ζ0, θ))

∂z

∂ζ0
(ζ0, θ) dζ0

+

∫ t0

0
dθ

∫ θ

0
G(c(τ0, θ), θ,x(τ0, θ), s(τ0, θ))

∂c

∂τ0
(τ0, θ) dτ0, 0 < t0 ≤ t.

Insert the expression above into equation (3.33) and obtain

c(t0, t) = L0+

∫ t

0
dθ

∫ L0

0
G(z(ζ0, θ), θ,x(ζ0, θ), s(ζ0, θ))

∂z

∂ζ0
(ζ0, θ) dζ0 (3.39)

+

∫ t0

0
σ(θ)dθ +

∫ t

t0

dθ

∫ t0

0
G(c(τ0, θ), θ,x(τ0, θ), s(τ0, θ))

∂c

∂τ0
(τ0, θ) dτ0

+

∫ t0

0
dθ

∫ θ

0
G(c(τ0, θ), θ,x(τ0, θ), s(τ0, θ))

∂c

∂τ0
(τ0, θ) dτ0, 0 < t0 ≤ t, t > 0.

Finally, we easily derive the equation for ∂c/∂t0 from (3.39)

∂c

∂t0
(t0, t) = σ(t0) +

∫ t

t0

G(c(t0, τ), τ,x(t0, τ), s(t0, τ))
∂c

∂t0
(t0, τ) dτ. (3.40)

3.5 Special problem

Equations (3.34), (3.35), (3.27), (3.28), (3.38), (3.39) and (3.40), which describe
the free boundary problem, are mutually connected. In addition, they depend on
substrates Sj , j = 1, ...,m. So, also diffusion equations (3.4) must be involved. In
this section we discuss a special mathematical problem by neglecting the
dependence on substrates. The general situation will be considered in Section 3.6.

Precisely, in this section we analyze the free boundary problem governed by
the following system of integral equations

xi(z0, t) = ϕi(z0) +

∫ t

0
Fi(z(z0, τ), τ,x(z0, τ)) dτ, i = 1, ..., n, (3.41)
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z(z0, t) = z0 +

∫ t

0
dτ

∫ z0

0
G(z(ζ0, τ), τ,x(ζ0, τ))

∂z

∂ζ0
(ζ0, τ) dζ0, (3.42)

∂z

∂z0
(z0, t) = 1 +

∫ t

0
G(z(z0, τ), τ,x(z0, τ))

∂z

∂z0
(z0, τ) dτ, (3.43)

when
0 ≤ z0 ≤ L0, 0 < t ≤ T, T > 0, (3.44)

and

xi(t0, t) = ψi(t0) +

∫ t

t0

Fi(c(t0, τ), τ,x(t0, τ)) dτ, i = 1, ..., n, (3.45)

c(t0, t) =

∫ t

0
dθ

∫ L0

0
G(z(ζ0, θ), θ,x(ζ0, θ))

∂z

∂ζ0
(ζ0, θ) dζ0 (3.46)

+L0 +

∫ t0

0
σ(θ)dθ +

∫ t

t0

dτ

∫ t0

0
G(c(τ0, τ), τ,x(τ0, τ))

∂c

∂τ0
(τ0, τ) dτ0

+

∫ t0

0
dτ

∫ τ

0
G(c(τ0, τ), τ,x(τ0, τ))

∂c

∂τ0
(τ0, τ) dτ0,

∂c

∂t0
(t0, t) = σ(t0) +

∫ t

t0

G(c(t0, τ), τ,x(t0, τ))
∂c

∂t0
(t0, τ) dτ, (3.47)

L(t0) =

∫ t0

0
dθ

∫ L0

0
G(z(ζ0, θ), θ,x(ζ0, θ))

∂z

∂ζ0
(ζ0, θ) dζ0 (3.48)

+L0 +

∫ t0

0
σ(θ)dθ +

∫ t0

0
dθ

∫ θ

0
G(c(τ0, θ), θ,x(τ0, θ))

∂c

∂τ0
(τ0, θ) dτ0,

when z0 ≥ L0 and
0 < t0 ≤ t, 0 < t ≤ T, T > 0. (3.49)

In this situation systems (3.41)-(3.43) and (3.45)-(3.47) and equation (3.48)
can be solved in series as shown in the following theorems.

Consider system (3.41)-(3.43) and introduce some new notations. Firstly, let
us redefine the vector x

x = (x1, ..., xn, xn+1, xn+2) (3.50)

where
xn+1(z0, t) = z(z0, t), xn+2(z0, t) =

∂z

∂z0
(z0, t). (3.51)
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In addition, let

ϕn+1(z0) = z0, Fn+1(τ,x(ζ0, τ)) = G(z(ζ0, τ), τ, x1, ..., xn)
∂z

∂ζ0
(ζ0, τ),

(3.52)
ϕn+2(z0) = 1, Fn+2(τ,x(z0, τ)) = G(z(z0, τ), τ, x1, ..., xn)

∂z

∂z0
(z0, τ). (3.53)

Assume Fi continuous and bounded

Mi = max |Fi|, 0 < τ ≤ t, 0 ≤ z0 < L0, |xi−ϕi| < ρi, i = 1, ..., n+2, (3.54)

where ρi are positive constants. Setting

T = min{ρ1/M1, ..., ρn/Mn, ρn+1/(Mn+1L0), ρn+2/Mn+2}, (3.55)

suppose that Fi satisfy the Lipschitz condition

|Fi(τ,x)− Fi(τ, x̃)| < λi

n+2∑
h=1

|xh − x̃h|, λi > 0, i = 1, ..., n+ 2, (3.56)

on

D1 = {0 < τ ≤ t < T, 0 < ζ0 ≤ z0 < L0, |xi − ϕi| < ρi, i = 1, ..., n+ 2}.
(3.57)

Theorem 1 If hypotheses (3.54)-(3.57) hold and ϕi ∈ C(0, L0), then there exists
a unique continuous solution to system (3.41)-(3.43), xi ∈ C((0, L0)× (0, T )).

Proof: Denote by Σ1 the space of continuous vectors x which satisfy the
inequalities

|xi − ϕi| < ρi, i = 1, ..., n+ 2, 0 ≤ z0 ≤ L0, 0 ≤ t ≤ T, (3.58)

and consider the norm

||x|| =
n+2∑
i=1

max exp(−γ1z0 − γ2t)|xi(z0, t)|, 0 ≤ z0 ≤ L0, 0 ≤ t ≤ T, (3.59)

where γ1 and γ2 are positive constants that will be specified later on.
Consider the map y = Ax on Σ1 defined by

yi(z0, t) = ϕi(z0) +

∫ t

0
Fi(τ,x(z0, τ)) dτ, i = 1, ..., n, (3.60)

yn+1(z0, t) = ϕn+1(z0) +

∫ t

0
dτ

∫ z0

0
Fn+1(τ,x(ζ0, τ)) dζ0, (3.61)
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yn+2(z0, t) = ϕn+2(z0) +

∫ t

0
Fn+2(τ,x(z0, τ)) dτ. (3.62)

Map (3.60)-(3.62) maps Σ1 into itself because of hypotheses (3.54)-(3.55). In
addition, it is a contractive map. Indeed, setting ỹ = Ax̃ we derive

|yi − ỹi| exp(−γ1z0 − γ2t) ≤ (3.63)

λi

∫ t

0
exp(−γ2(t− τ))

n+2∑
h=1

exp(−γ1z0−γ2τ)|xh(z0, τ), τ)− x̃h(z0, τ), τ)| dτ ≤

λi||x− x̃||

∫ t

0
exp(−γ2(t− τ)) dτ ≤

λi
γ2

||x− x̃||, i = 1, ..., n,

|yn+1 − ỹn+1| exp(−γ1z0 − γ2t) ≤ (3.64)

λn+1

∫ t

0
dτ

∫ z0

0
e−γ1(z0−ζ0)−γ2(t−τ)

n+2∑
h=1

e−γ1ζ0−γ2τ |xh(ζ0, τ), τ)−x̃h(ζ0, τ), τ)| dζ0 ≤

λn+1||x− x̃||

∫ t

0
dτ

∫ z0

0
e−γ1(z0−ζ0)−γ2(t−τ) dζ0 ≤

λn+1

γ1γ2
||x− x̃||,

|yn+2 − ỹn+2| exp(−γ1z0 − γ2t) ≤ (3.65)

λn+2

∫ t

0
e−γ2(t−τ)

n+2∑
h=1

e−γ1z0−γ2τ |xh(z0, τ), τ)− x̃h(z0, τ), τ)| dτ ≤

λn+2||x− x̃||

∫ t

0
e−γ2(t−τ) dτ ≤

λn+2

γ2
||x− x̃||.

Summing (3.63)-(3.65) gives

||y − ỹ|| ≤ λ||x− x̃||,

where

λ =

n∑
i=1

λi
γ2

+
λn+1

γ1γ2
+
λn+2

γ2

can be made < 1 if γ1 and γ2 are selected large enough. Therefore, y = Ax is a
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contractive map and the theorem is proved.
Similar reasonings are now applied to system (3.45)-(3.47). In addition, we

assume that the functions xi(z0, t), i = 1, ...n, and z(z0, t) are known, as
determined in the previous discussion. In particular, it is assumed to be known the
following function

ψn+1(t0, t) = L0+

∫ t0

0
σ(θ)dθ+

∫ t

0
dθ

∫ L0

0
G(z(ζ0, θ), θ,x(ζ0, θ))

∂z

∂ζ0
(ζ0, θ) dζ0.

(3.66)
Define the functions xn+1(t0, t) and xn+2(t0, t) as follows

xn+1(t0, t) = c(t0, t), xn+2(t0, t) =
∂c

∂t0
(t0, t), (3.67)

and introduce the new vector x

x(t0, t) = (x1, ..., xn, xn+1, xn+2) (3.68)

where x1, ..., xn are the functions in equation (3.45). Note that the functions xi
defined in (3.67)-(3.68) are different from the functions xi defined in (3.50)-(3.51).
In addition, let

Fn+1(τ,x(τ0, τ)) = G(c(τ0, τ), τ, x1, ..., xn)
∂c

∂τ0
(τ0, τ), (3.69)

ψn+2(t0, t) = σ(t0), Fn+2(τ,x(t0, τ)) = G(c(t0, τ), τ, x1, ..., xn)
∂c

∂t0
(t0, τ).

(3.70)
Assume Fi continuous and bounded

Ki = max |Fi|, 0 < τ < t, 0 < τ0 < t, |xi − ψi| < μi, i = 1, ..., n+ 2, (3.71)

where μi are positive constants. Furthermore,

T = min{μ1/K1, ..., μn/Kn,
√
μn+1/(2Kn+1), μn+2/Kn+2}, (3.72)

and Fi satisfy the Lipschitz condition

|Fi(τ,x)− Fi(τ, x̃)| < λi

n+2∑
h=1

|xh − x̃h|, λi > 0, i = 1, ..., n+ 2, (3.73)

on

D2 = {0 < τ0 < t0, 0 < τ < t0 ≤ t < T, |xi − ψi| < μi, i = 1, ..., n+ 2}.
(3.74)
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Theorem 2 If hypotheses (3.71)-(3.74) hold and ψi, σ ∈ C(0, T ), i = 1, ..., n,
then there exists a unique continuous solution
xi ∈ C((0, T )× (0, T )), i = 1, ..., n+ 2 to system (3.46)-(3.48).

Proof: Denote by Σ2 the space of continuous vectors x(t0, t) which satisfy the
condition

|xi − ψi| < μi, i = 1, ..., n+ 2, 0 ≤ t0 ≤ T, 0 ≤ t ≤ T, (3.75)

and consider the norm

||x|| =

n+2∑
i=1

max exp(−γ3t0 − γ4t)|xi(t0, t)|, 0 ≤ t0 ≤ T, 0 ≤ t ≤ T, (3.76)

where γ3 and γ4 are positive constants that will be specified later on.

Consider the map y = Bx on Σ2 defined by

yi(t0, t) = ψi(t0) +

∫ t

t0

Fi(τ,x(t0, τ)) dτ, i = 1, ..., n, (3.77)

yn+1(t0, t) = ψn+1(t0, t) +

∫ t

t0

dτ

∫ t0

0
Fn+1(τ,x(τ0, τ)) dτ0, (3.78)

+

∫ t0

0
dτ

∫ τ

0
Fn+1(τ,x(τ0, τ)) dτ0,

yn+2(t0, t) = ψn+2(t0) +

∫ t

t0

Fn+2(τ,x(t0, τ)) dτ. (3.79)

Map (3.77)-(3.79) maps Σ2 into itself because of hypotheses (3.71)-(3.74).
Moreover, it is a contraction. Indeed, setting ỹ = Bx̃ we get

|yi(t0, t))− ỹi(t0, t))|e
−γ3t0−γ4t (3.80)

≤ λi

∫ t

t0

e−γ4(t−τ)
n+2∑
h=1

e−γ3t0−γ4τ |xh(t0, τ)− x̃h(t0, τ)|dτ

≤ λi||x− x̃||/γ4, i = 1, ..., n,

|yn+1(t0, t)− ỹn+1(t0, t)|e
−γ3t0−γ4t (3.81)

≤ λn+1

∫ t

t0

dτ

∫ t0

0
e−γ3(t0−τ0)e−γ4(t−τ)

n+2∑
h=1

e−γ3τ0−γ4τ |xh(τ0, τ)− x̃h(τ0, τ)|dτ0
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+λn+1

∫ t0

0
dτ

∫ τ

0
e−γ3(t0−τ0)e−γ4(t−τ)

n+2∑
h=1

e−γ3τ0−γ4τ |xh(τ0, τ)− x̃h(τ0, τ)|dτ0

≤ 2λn+1||x− x̃||/(γ3γ4),

|yn+2(t0, t)− ỹn+2(t0, t)|e
−γ3t0−γ4t (3.82)

≤ λn+2

∫ t

t0

e−γ4(t−τ)
n+2∑
h=1

e−γ3t0−γ4τ |xh(t0, τ)− x̃h(t0, τ)|dτ.

≤ λn+2||x− x̃||/γ4.

Summing (3.80)-(3.82) gives

||y − ỹ|| ≤ λ||x− x̃||,

where

λ =

n∑
i=1

λi
γ4

+
2λn+1

γ3γ4
+
λn+2

γ4

can be made < 1 if γ3 and γ4 are selected large enough. Therefore, y = Bx is a
contractive map and the theorem is proved.

Finally, consider equation (3.48). By using Th. 1 and Th. 2, we immediately
obtain the solution for this equation.

Interesting properties of solutions to systems (3.41)-(3.43) and (3.46)-(3.48)
can be proved as in [27, 30]. Precisely,

∑n
i=1 fi = 1 at any time if it is so initially.

In addition, fi ≥ 0 at any time.

3.6 Effect of substrates

Biofilm development is a complex process strongly influenced by substrates
availability. Substrate concentration trends inside biofilm derive from the
combination of two processes that take place in the same time within biofilm:
microbial conversion of substrates and transport substrate by molecular diffusion.
Molecular diffusion of substrates into biofilm is influenced by several factors,
such as flux of substrates received from bulk, diffusivity of substrate species,
structural characteristics of biofilm. Substrate trends determine spatially
heterogeneous growth of microbial species that contributes to the formation of
environmental microniches allowing the coexistence of different microbial
groups. Distinct chemical niches exist at different depths in biofilms, there are
several studies in which chemical gradients have been related to the distribution of
specific bacterial species. For example, the stratified distributions of the bacteria
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that constitute methanogenic consortia have also been described and can be
understood in terms of the diffusive exchange of metabolites among species.

In this section the influence of substrates on biofilm growth is considered and
it is assumed

rM,i = rM,i(z, t,X,S). (3.83)

Note that equations (3.41)-(3.49) still hold, but Fi and G must be modified
according to (3.83)

Fi = Fi(z, τ,x, s), G = G(z, τ,x, s), (3.84)

where notations (3.26) and (3.32) have been used.
The diffusion of substrates is governed by equations (3.4) with

initial-boundary conditions (3.9)-(3.11). The solution can be expressed in terms of
integral equations by using known results on the heat equation in general regions,
e.g. [149]. So, we obtain

Sj(z, t) =

∫ L0

0
Sj0(ζ0)Nj(z, ζ0, t)dζ0 +

∫ t

0
Djwj(τ)Nj(z, L(τ), t− τ)dτ

(3.85)

+

∫ t

0
SjL(τ)[Nj(z, L(τ), t− τ)L̇(τ)−DjNjζ(z, L(τ), t− τ)] dτ

+

∫ t

0
dτ

∫ L(τ)

0
rS,j(ζ, τ,X(ζ, τ),S(ζ, τ))Nj(z, ζ, t− τ)dζ, j = 1, ...,m,

wj(t) = 2

∫ L0

0
S′

j0(ζ0)Gj(L(t), ζ0, t) dζ0+2

∫ t

0
ṠLj(τ)Gj(L(t), L(τ), t−τ) dτ

(3.86)

+2

∫ t

0
dτ

∫ L(τ)

0
rSj(ζ, τ,X(ζ, τ),S(ζ, τ))Njz(L(t), ζ, t− τ)dζ

+2

∫ t

0
Djwj(τ)Njz(L(t), L(τ), t− τ) dτ, j = 1, ...,m,

where the following notations have been used

wj(t) =
∂Sj
∂z

(L(t), t), Kj(z, t) =
exp(−z2)/4Djt√

4πDjt
,

Nj(z, ζ, t− τ) = Kj(z − ζ, t− τ) +Kj(z + ζ, t− τ),

Gj(z, ζ, t− τ) = Kj(z − ζ, t− τ)−Kj(z + ζ, t− τ).

Now, system (3.85)-(3.86) is suitably transformed by using positions (3.26),
(3.32) and the change of variables ζ = z(ζ0, t), ζ = c(τ0, t) introduced in Section
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3.3. Therefore, for 0 ≤ z0 ≤ L0 we get

sj(z0, t) =

∫ L0

0
Sj0(ζ0)Nj(z(z0, t), ζ0, t)dζ0+

∫ t

0
Djwj(τ)N(z(z0, t), L(τ), t−τ)dτ

(3.87)

+

∫ t

0
SjL(τ)[Nj(z(z0, t), L(τ), t− τ)L̇(τ)−DjNjζ(z(z0, t), L(τ), t− τ)] dτ

+

∫ t

0
dτ

∫ L0

0
rS,j(ζ(ζ0, τ), τ,x(ζ0, τ), s(ζ0, τ))Nj(z(z0, t), ζ(ζ0, τ), t−τ)

∂ζ

∂ζ0
dζ0

+

∫ t

0
dτ

∫ τ

0
rS,j(c(τ0, τ), τ,x(τ0, τ), s(τ0, τ))Nj(z(z0, t), c(τ0, τ), t−τ)

∂c

∂τ0
dτ0.

Moreover, for z0 > L0 and 0 < t0 ≤ t, system (3.85) reduces to

sj(t0, t) =

∫ L0

0
Sj0(ζ0)Nj(c(t0, t), ζ0, t)dζ0+

∫ t

0
Djwj(τ)N(c(t0, t), L(τ), t−τ)dτ

(3.88)

+

∫ t

0
SjL(τ)[Nj(c(t0, t), L(τ), t− τ)L̇(τ)−DjNjζ(c(t0, t), L(τ), t− τ)] dτ

+

∫ t

0
dτ

∫ L0

0
rS,j(ζ(ζ0, τ), τ,x(ζ0, τ), s(ζ0, τ))Nj(c(t0, t), ζ(ζ0, τ), t−τ)

∂ζ

∂ζ0
dζ0

+

∫ t

0
dτ

∫ τ

0
rS,j(c(τ0, τ), τ,x(τ0, τ), s(τ0, τ))Nj(c(t0, t), c(τ0, τ), t−τ)

∂c

∂τ0
dτ0.

System (3.86) can be treated similarly. Notice that integral system (3.85)-(3.86)
has been widely discussed since it is involved in the well-known Stefan problem.
This system can be associated to equations (3.41)-(3.49), modified according to
(3.84), and a result of uniqueness and existence to solutions can be deduced.

3.7 Numerical simulations

Heterotrophic-autotrophic competition for space with oxygen as common
substrate proposed in [23, 27] has been used to provide numerical simulations of
the free boundary problem introduced in Section 3.2. The proposed numerical
example, described in details by the equations in Table 3.1, is based on mass
balance equations for substrates, products, and bacterial groups and includes the
bio-chemical reactions of heterotrophic-autotrophic competition. The model
considers the kinetics of microbial growth and decay and takes into account two
groups of bacteria Heterotrophic Bacteria (X1) and Autotrophic Bacteria (X2),
and three components (substrates), Ammonia (S1), Organic Carbon (S2) and
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Oxygen (S3). Inert is modelled as another microbial species, whose growth
derives from the heterotrophic and autotrophic biomass decay. Oxygen is used for
organic carbon oxidation, nitrification and endogenous respiration. Oxidation of
ammonia nitrogen to nitrate by the autotrophs provides energy for autotrophic
growth.

Process X1 X2 X3 S1 S2 S3 Process rate rj
HG 1 – – − 1

Y1
– −α1−Y1

Y1
μm,1X1

S1
K1,1+S1

S3
K3,1+S3

AG – 1 – – − 1
Y2

−α2−Y2
Y2

μm,2X2
S2

K2,1+S2

S3
K3,2+S3

HER −1 – – – – – bres,1X1
S3

K3,1+S3

AER – −1 – – – – bres,2X2
S3

K3,2+S3

AD −1 – 1 – – – bm,1X1

HD – −1 1 – – – bm,2X2

Table 3.1: Stoichiometry and rate laws for microbial processes. HG = heterotroph
growth; AG = autotroph growth; HER = heterotroph endogenous respiration; AER
= autotroph endogenous respiration; HD = heterotroph decay; AG = autotroph
decay.

The differential system (3.1)-(3.4) has been integrated numerically [150, 151].
An initial biofilm thickness L0 = 0.3 mm has been assumed and
Dirichlet-Neumann boundary conditions have been adopted. The oxygen
concentration at the interface biofilm/bulk liquid, the values of ammonia and
acetate fluxes from bulk liquid to biofilm and biological parameters are reported
in Table 3.2.

Parameter Unit Set A Set B Set C
COD Flux gm−2d−1 0.4 0.4 0.4
Ammonia Flux gm−2d−1 0.8 0.8 0.8
Oxygen Concentration mgl−1 8 8 8
Time Simulation h 24 24 24
Initial Biofilm thickness cm 0.03 0.03 0.03
Attachment Rates mmd−1 5 1 0.5
Initial Volume Fraction of HB – 0.65 0.65 0.65
Initial Volume Fraction of AB – 0.34 0.34 0.34
Initial Volume Fraction of Inert – 0.01 0.01 0.01

Table 3.2: Operational parameters used for model simulations.

The values of kinetics and stoichiometric parameters reported in Table 3.1 and
used in numerical simulations are the following: μm,1 = 25; μm,2 = 5; bm,1 = 1;
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bm,2 = 1; bres,1 = 1; bres,2 = 0.5; Y1 = 0.8; Y2 = 0.6; K1,1 = 5; K2,1 = 1;
K3,1 = 0.1; K3,2 = 0.1.

Numerical simulations have been developed in order to predict the biomass
distribution and substrate concentration trends over biofilm depth. The results are
shown in Figure 3.3 and Figure 3.2, respectively. In particular, three sets of
simulations at different attachment rates but at the same simulation time have
been performed. The objective is the evaluation of the effects of attachment rate
on biofilm growth in terms of biofilm thickness, bacterial species distribution and
substrate concentration trends.
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Figure 3.2: Effect of attachment rate (σ) on the volumetric fraction of the bacterial
species in biofilm. A: σ = 5 mmd−1; B: σ = 1 mmd−1; C: σ = 0.5 mmd−1.

When the attachment rates is equal to 5 mmd−1 (Figure 3.3 (A)) biofilm
thickness is more than two time the biofilm thickness when the attachment rates is
less than 1 mmd−1 (Figure 3.3 (A,B)). This difference determines different
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substrate concentration trends into biofilm and, consequently, different biofilm
structure occurs. In this case heterotroph bacteria are found to be predominant at
the outmost layer of biofilm.

It is interesting to note the sharp variation on biofilm volume fraction in the
superficial layer of the biofilm. This was expected, since, after the initial phase of
attachment, the biofilm volume fraction is mainly determined by internal bacteria
metabolism and not by the external biomass flux concentration. The sum equal
to one of the three different biofilm volume fractions emphasizes the quality of
numerical integration.
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Figure 3.3: Effect of attachment rate (σ) on the substrate trends in biofilm. A: σ =
5 mmd−1; B: σ = 1 mmd−1; C: σ = 0.5 mmd−1.

The diffused substrate concentration trends in the biofilm, for three different
attachment rates, are shown in Figure 3.2. The different thickness of biofilm and
different kinds of bacterial species growing into biofilm determine different
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substrate concentration trends. When the attachment rates is equal to 5 mmd−1

(Figure 3.2 (A)) there is a sharper decrease of oxygen concentration than
attachment rates is less than 1 mmd−1 (Figure 3.2 (A,B)). This occurs since a
great concentration of heterotrophs at the outmost layer of biofilm implies a
greater consumption of oxygen.
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Chapter 4

Mathematical modeling of competition
and coexistence of sulfate-reducing
bacteria, acetogens and methanogens in
multispecies biofilms

This work presents an integrated mathematical model able to simulate the
physical, chemical and biological processes prevailing in a sulfate reducing
biofilm under dynamic conditions. The model includes sulfate reduction by
complete and incomplete sulfate reducing bacteria; lactate removal by sulfate
reduction and by acetogenic bacteria and acetate consumption via
methanogenesis. Numerical integration based on the method of characteristics
has been developed. The major problem of sulfate-reducing fixed-growth reactors
is the formation of undesired bacterial species which compete for space and
substrate within the biofilm with sulfate reducing bacteria. The effect of
COD/SO2−

4 ratio on the reactor performances in terms of bacterial species
distribution and substrate diffusion trends in the biofilm has been assessed. The
simulation results reveal a stratification of microbial activities in biofilm reflecting
the different ecological niches created by substrate gradients.

This chapter was published as:
Mattei, M.R., D’Acunto, B., Esposito, G., Frunzo, L. and Pirozzi, F. (2014). Mathematical
modeling of competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens
in multispecies biofilms. Desalination and Water Treatment, 2014, pp. 1-9, DOI:
10.1080/19443994.2014.937764.
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4.1 Introduction

High Sulfate Containing Wastewaters (HSCW) are generated from various
industrial activities, such as pulp and paper industries, mining and mineral
processing, production of explosives, scrubbing of flue gases, food processing and
petrochemical industries [152]. These anthropogenic activities have contributed to
local imbalances in the natural sulfur cycle, resulting in acidification, leaching of
toxic metals, elevated sulfate levels in natural waters, potential production of
corrosive and toxic sulfide, emissions of SO2, H2S and odorous volatile sulfur
compounds, cat clays and heavy metal release upon oxygen exposure of
sediments after dredging [153]. HSCWs often contain elevated concentrations of
metals (iron, aluminium and manganese and other heavy metals) and metalloids,
deriving from the mining and processing of metal ores and coals, which increase
the complexity of the degradation routes [154, 155].

During the last years numerous psychochemical and biological techniques
have been investigated for the neutralization and removal of metals and sulfate
from wastewaters. Two main categories can be individuated: passive and active
processes. Passive treatment processes commonly replace the conventional
neutralisation techniques involving the addition of a chemical-neutralising agent.
Passive treatment processes require less energy and chemicals and relatively low
maintenance costs. Among these it is possible to enumerate natural wetlands,
aerobic and anaerobic wetlands, open limestone channels. Although the passive
processes are considered low-cost treatment technologies, their efficiency is not
very high compared to very expensive surface requests in terms of land. Active
treatment processes are, instead, much more efficient. The treatment efficiency is
improved through the application of energy, chemical and biological agents.
Active treatment processes require certainly higher maintenance cost and
manpower when compared to passive processes, but these costs are offset by the
high treatment efficiency. Technologies such as reverse osmosis, ion exchange,
limestone and chemical neutralisation and active biological treatment represent
typical examples of active treatment processes. In particular, active biological
sulfate removal from HSCWs represents a valid and cost-effective alternative to
the costly and sometimes complex physico-chemical sulfate removal methods.

Biological sulfate removal can be accomplished in two steps: a dissimilatory
sulfate reduction to sulfide performed by Sulfate Reducing Bacteria (SRB),
followed by sulfide removal through partial oxidation to sulfur or precipitation of
heavy metals sulfide. The dissimilatory sulfate reduction can take place in
methanogenic or sulfidogenic bioreactors. The production of sulfide has been
shown to be inhibitory for anaerobic digestion. As a consequence many studies
have been carried out to assess the sulfide toxicity, individuate the most-suitable
strategies to prevent it and steer the competition between SRB, acetogenic and
methanogenic microorganisms in the direction of methanogenesis. On the other
hand, sulfidogenesis can be seen as an ideally suited process to remove both
sulfate and heavy metals from HSCWs and the interest in the application of this
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process as the main step for the biological treatment of specific wastestreams from
chemical, mining and galvanic industries as well as scrubbing water for flue-gas
desulfurization, has been growing [156].

Biological sulfate reduction is mediated by heterotrophic or autotrophic SRB,
able to reduce sulfate to sulfide in the presence of a carbon source (CO2, acetate,
lactate, propionate, etc.). Different types of carbon can be used as energy sources;
most of the substrates are typical fermentation products or intermediate breakdown
products of larger molecules [157]. A minimum chemical oxygen demand (COD)
to sulfate mole ratio of 0.67 is required for achieving theoretically possible removal
of sulfate [158]. Lens et al [152] reported that SRB are very diverse in their carbon
source utilization and metabolic activities. The availability of carbon and energy
source provides the energy for the growth and maintenance of SRB. SRB carry out
sulfate reduction basing on the following reaction [159]:

SO2−
4 + 8e− + 4H2O → S2− + 8OH− (4.1)

In most cases the electron donor and carbon source are the same compound.
However when hydrogen is used as the electron donor, CO2 can be used as carbon
source by SRB. The selection of the electron donor depends on the ability of SRB to
utilize the substrate, its costs per unit of reduced sulfate, the availability in sufficient
quantities and the remaining pollution load of the additive in the wastestream [152,
157]. The choice of a suitable carbon source and electron donor for this process is
still a challenge.

SRB can be classified into two groups based on their functional ability to
oxidise the organic compounds completely to CO2 - SRB completely oxidizers
(SRB(C)) or incompletely to acetate and CO2 - SRB incompletely oxidizers
(SRB(I)). Postgate [160] indicated that lactate offers potential advantages as
carbon source and electron donor in the sulfate reduction process. Lactate can be
used by many SRB species; its oxidation results in high biomass yield and high
alkalinity production. However, the potential accumulation of acetate in the
effluent due to the incomplete oxidation of lactate to acetate and CO2 represents
the main disadvantage of using lactate as carbon source. For this inconvenient a
large amount of lactate is needed to achieve complete reduction of sulfate,
contributing to increase the costs of bioreactors performance. In addition, due to
the release of acetate, the COD of the effluent stream increases. The incomplete
oxidation of carbon sources to acetate can be attributed to the lower value of free
energy for the oxidation of acetate to carbon dioxide which prevents further
oxidation of acetate to carbon dioxide [160]. Furthermore, the presence of acetate
and lactate can allow the development of both methanogenic archae and cetogenic
bacteria that can ferment lactate, resulting in the production of acetate. Due to
their kinetic properties, high levels of lactate encourage the growth of acetogenic
bacteria. On the other hand lactate oxidation becomes dominant under conditions
of lactate limitation and excess sulfate [161]. Indeed, in an investigation based on
a full scale anaerobic digester [162], lactate oxidizers were shown to have lower
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Ks and μmax values than lactate fermenters.
Numerous reactor designs dedicated to biological sulfate reduction have been

reported [157]. They can be classified into two main groups: i) suspended growth
reactors, that involve the growth of planktonic bacteria, such as batch reactors,
baffled reactors, up-flow anaerobic sludge bed reactors and gas-lift reactors; and
ii) attached growth reactors, that involve a bacterial biomass attached to media
(biofilm), i.e. fixed bed reactors or fluidized bed reactors. Various immobilized
biomass reactors have gained increasing attention due to the advantages of
displacing biomass in biofilms. Bacteria growing in biofilms cannot be washed
out with the water flow. This allows to retain the biomass within the reactor and
therefore to operate at shorter hydraulic retention time (HRT). Maximal biomass
retention is desirable for process stability and minimal sludge production.
Moreover the high biomass retention and concentration characterizing biofilm
reactors strongly affects the achievable loading rates, with the possibility of
obtaining high treatment efficiencies [157]. In addition, biofilms show good
tolerance for shocks of hydraulic and organic loading and can allow treating
contemporary different pollutants thanks to niche differentiation.

Biological sulfate reduction in anaerobic fixed growth reactors has been
investigated extensively at lab–scale. In designing these biofilm reactors, in
predicting their behavior under different operating conditions and in
understanding the complex microbial relations existing in anaerobic environments
in the presence of sulfate, mathematical modelling seems to be essential. Indeed,
mathematical models can be used to estimate parameters that cannot be observed
directly in experiments and develop an online control strategy. Therefore the use
of mathematical modelling clearly benefits engineers, designers and operators
[163, 164].

The scope of this work is to evaluate the SRB growth in multispecies biofilms
by modelling the competition between the different bacterial groups involved in
the lactate metabolism under biosulfidogenic conditions. In particular this work is
aimed at evaluating the dynamical response of the model under established
boundary conditions assessing the effect of different COD/SO2−

4 ratios on
microbial population shifts. The numerical simulations have been obtained with
great accuracy by the method of characteristics. Simulation results show that the
model can predict the short-term responses of biofilm performance to substrate
variations in the bulk liquid as well as the long-term development of film
thickness and microbial species.

4.2 Statement of the problem

Sulfate reducing applications usually utilize mixed cultures comprising of SRB and
anaerobic fermentative microorganisms, such as methanogens and acetogens [157].
To perform a complete reduction of sulfate to sulfide, SRB have to effectively
compete with the other anaerobic bacteria for the available organic substrate. The
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presence of sulfate seems to be crucial in this competition. As stated in [165], the
degradation of organic matter in sulfate-reducing environments is different from
the degradation in methanogenic environments. Macromolecules, such as proteins,
polysaccharides and lipids are hydrolysed by hydrolytic bacteria. Subsequently,
the monomers amino acids, sugars and fatty acids are fermented by fermentative
bacteria into a range of fermentation products, such as acetate, propionate, butyrate,
lactate and hydrogen. In the presence of sulfate, SRB consume these fermentation
products. However, in the absence of sulfate, hydrogen and acetate, the acetate
having been produced directly by fermentation or indirectly by acetogenesis, are
consumed by the methanogens. Among simple organic substrates, SRB have been
demonstrated to use lactate, ethanol, methanol, acetate, proprionate and butyrate
[166]. Lactate can support the growth of a wide spectrum of SRB, encouraging
microbial diversity and consequent treatment system resilience [167].

Figure 4.1: Main pathways of the biological process.

Lactate can be metabolized via fermentation or sulfate-reducing oxidation or
both by a wide range of microorganisms. Lactate fermentation is the anaerobic
degradation of lactate, independent of sulfate reduction [168]. Lactate is oxidized
either incompletely or completely in the presence of sulfate by a diverse range of
SRB strains [169]. According to [166], only particular species of SRB are able to
oxidize lactate to CO2 whereas others oxidize lactate to acetate and very few can
use acetate as carbon source. Besides the limited capability of SRB to degrade it,
acetate can accumulate in solution even if other microorganisms, such as
methanogens, are present. Competition between the different microbial groups
depends on the kinetic properties of the interacting microorganisms, such as the
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maximum specific growth rate (μmax) and substrate affinity (Ks) [167]. Extensive
experimental efforts have been devoted to the kinetic study of lactate metabolic
pathway under biosulfidogenic conditions in chemostat cultures [167, 169]. In
these studies, the effects of different sulfate concentrations, lactate concentrations
and volumetric loading rates on the kinetics of lactate utilization and the
stoichiometry of biological sulfate reduction have been investigated. In the case of
immobilized biomass reactors, the competition between the different microbial
groups is regulated not only by kinetic properties and dilution rates, but substrate
diffusion and niche differentiation have been found to have a crucial role in
dictating lactate utilization pathway. In this work the dynamics of the anaerobic
sulfate reduction in a multispecies biofilm are discussed. Chemical, physical and
biological transient processes are analyzed. In particular the model takes into
account the bioprocess pathways reported in Figure 4.1.

The model can simulate the activities of microorganisms living in a sulfate
reducing multispecies biofilm and evaluate the interactions between the related
processes: lactate and acetate consumption, sulfate reduction, and bacterial
growth and decay. Three reacting components are simultaneously considered:
lactate, sulfate and acetate. The proposed model takes into account the growth of
two types of sulfate reducing bacteria classified into two groups based on their
functional ability to oxidise the lactate completely to carbon dioxide (LDSRB(C))
or incompletely to acetate and carbon dioxide (LDSRB(I)). The presence of
lactate in an anaerobic environment allows the development of acetogenic bacteria
(AB) with the production of Acetate and Hydrogen. The undesired acetate
production by both incomplete sulfate reducing bacteria and acetogenic bacteria
allows the growth of methanogenic archea (MA) that produce methane as a final
metabolic product. Inert residues (Inert), deriving from microbial biomass decay,
are also taken into account. AB compete for space and lactate with sulfate
reducing bacteria, while MA compete only for space. The growth of these
microorganisms is favoured by the formation of zones in biofilm characterized by
different substrate concentration levels.

4.3 The mathematical model

The biofilm growth is governed by the following equations [23, 30]:

∂Xi

∂t
+

∂

∂z
(uXi) = ρirM,i (z, t,X, S) , 0 ≤ z ≤ L (t) , t > 0, i = 1, 2, 3, 4, 5,

(4.2)

∂u

∂z
=

5∑
i=1

rM,i (z, t,X, S) , 0 < z ≤ L (t) , t > 0, (4.3)

where Xi = ρifi(z, t) denotes the concentration of the microbial species and
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inert residues; fi denotes the volume fraction of microbial species
i = 1, 2, 3, 4, 5; ρi is the density assumed constant; u(z, t) is the velocity of the
microbial mass displacement with respect to the biofilm support interface; the
term rM,i(z, t,X, S) represent the biomass growth rate, X = (X1, X2, X3, X4, X5)
and S = (S1, S2, S3, S4, S5). The net biomass growth rates are given by:

rM,1 = (μ1 −Kd,1)X1, (4.4)

rM,2 = (μ2 −Kd,2)X2, (4.5)

rM,3 = (μ3 −Kd,3)X3, (4.6)

rM,4 = (μ4 −Kd,4)X4, (4.7)

while for inert residues

rM,5 = Kd,1X1 +Kd,2X2 +Kd,3X3 +Kd,4X4, (4.8)

where μ1, μ2, μ3 and μ4 are the biomass growth rates for biomass X1, X2, X3

and X4. Kd,1,Kd,2,Kd,3 and Kd,4are the decay-inactivation rates for the single
microbial species. The biomass growth rates are given by:

μ1 = μmax,1
S1

K1,1 + S1

S2
K1,2 + S2

, (4.9)

μ2 = μmax,2
S1

K2,1 + S1

S2
K2,2 + S2

, (4.10)

μ3 = μmax,3
S2

K3,2 + S2
, (4.11)

μ4 = μmax,4
S3

K4,3 + S3
, (4.12)

where: μmax,i is the maximum growth rate for biomass i; Ki,j is the half
saturation constant for substrate j(S1, S2, S3) of biomass i. The diffusion of
substrates is governed by the equations:

∂Sj
∂t

−Dj
∂2Sj
∂z2

= rS,j (z, t,X, S) , 0 < z < L (t) , 0 < t ≤ T, j = 1, 2, 3,

(4.13)
where Dj denotes the diffusivity coefficient and rS,j(z, t,X, S) the net

conversion rate of substrate j, expressed by:
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rS,1 = −1.5
(1− Y1,2)

Y1,2
μ1 − 1.5

(1− Y2,2)

Y2,2
μ2, (4.14)

rS,2 = −
1

Y1,2
μ1 −

1

Y2,2
μ2 −

1

Y3,2
μ3, (4.15)

rS,3 = −0.8
(1− Y2,3)

Y2,3
μ2 − 0.8

(1− Y3,3)

Y3,3
μ3 −

1

Y4,3
μ4, (4.16)

where Yi,j denotes the yield for biomass i and substrates j. The following
initial-boundary conditions will be considered for equations (4.2, 4.3, 4.13):

Xi (z, 0) = ϕi (z) , u(0, t) = 0, 0 ≤ z ≤ L0, t ≥ 0, i = 1, 2, 3, 4, 5,
(4.17)

Sj (z, 0) = S0j (z) , 0 ≤ z ≤ L0, j = 1, 2, 3, (4.18)

∂Sj
∂z

(0, t) = 0, Sj (L (t) , t) = Gj(t), t > 0, i = 1, 2, 3, (4.19)

The functions ϕi(z) represent the initial concentrations of biomass i, the
functions S0j(z) represent the initial substrate concentrations into biofilm,
Gj(t)represent the values assumed by substrates Sj at the biofilm-bulk liquid
interface. The free boundary evolution is governed by the following ordinary
differential equation:

L̇ (t) = u (L (t) , t)− σ (L (t) , t) , t > 0, (4.20)

with the following initial condition:

L (0) = L0, (4.21)

where L0 denotes the initial biofilm thickness and σ(L(t), t) represents the
velocity at which biomass is exchanged between biofilm and bulk liquid [23], the
expression used in this work is:

σ(L(t), t) = λL2(t) (4.22)

The qualitative analysis of system (4.2, 4.3, 4.13) developed in [27] was based
on the characteristic method. The numerical method proposed in [57] has been
applied. The procedure can be briefly summarized as follows: from the initial–
boundary conditions u is computed; then L, X, S, are computed in this order; next
the computational process is repeated and the solution at the final time is obtained.
Numeric integration of the system (4.2, 4.3, 4.13, 4.17, 4.18, 4.19, 4.20, 4.21)
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has been performed using original software. The schematic representation of the
microbial process is reported in Table 4.1.

4.4 Results and discussion

The mathematical model proposed in this paper has been applied to simulate the
sulfate reduction process in a multispecies biofilm with an initial thickness of 300
μm. The initial conditions and biological parameters, used in the model, are
reported in Table 4.2. The model has been addressed to evaluate the microbial
structure of a sulfate-reducing biofilm as affected by changing COD to sulfate
ratios.

Parameter Unit Set A Set B Set C
COD Concentration mgCODl−1 0.2 0.3 0.1
Sulfate concentration mgl−1 0.1 0.2 0.2
Time Simulation d 10 10 10
Initial Biofilm thickness μm 300 300 300
Initial Volume Fraction of LDSRB(C) – 0.3 0.3 0.3
Initial Volume Fraction of LDSRB(I) – 0.3 0.3 0.3
Initial volume fraction of AB – 0.2 0.2 0.2
Initial volume fraction of MA – 0.2 0.2 0.2
Initial volume fraction of Inert – 0 0 0
Shear constant m−1d−1 2000 2000 2000

Table 4.2: Operational parameters used for model simulation

The model assumes appropriate boundary conditions for the biological
process modelled. An initial arbitrary biomass distribution has been adopted in
order to evaluate the dynamical response of the model as the system tends to reach
an equilibrium that is not affected by the initial conditions. The microbial
equilibrium is only governed by the boundary conditions, as for each dynamic
model. Kinetics and stoichiometric parameters, and diffusion coefficients reported
in Table 4.3 have been adopted. Figures 4.2, 4.3 and 4.4 show the results of model
simulations, named respectively set A, set B and set C, performed to assess the
COD/SO2−

4 ratio effect on the reactor performances in terms of bacterial volume
fractions (Figures 4.2 (B), 4.3 (B), 4.4 (B)) and concentration trends of substrates
(Figures 4.2 (A), 4.3 (A), 4.4 (A)) within biofilm for a 10 day simulation.
COD/SO2−

4 ratios in the range 0.5 - 2 have been investigated. The simulations
have been performed to evaluate the dynamical response of the biofilm in terms of
volume fractions of bacteria and concentration trends of substrates. In particular
the results show the model capability to reveal the microbial stratification in the
biofilm, evaluating the effect of substrate diffusion on biomass growth.
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Figure 4.2: Substrate trends in the biofilm (A) and bacterial volumetric fractions
(B) in the biofilm for a COD/SO42− ratio = 0.5. Dotted line: sulfate
concentration; dashdot line: COD; continuous line: acetate concentration.
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Figure 4.3: Substrate trends in the biofilm (A) and bacterial volumetric fractions
(B) in the biofilm for aCOD/SO2−

4 ratio = 1.5. Dotted line: sulfate concentration;
dashdot line: COD; continuous line: acetate concentration.

Figures 4.2, 4.3 and 4.4 show biomass distribution and substrate concentration
trends at 0.5, 1.5 and 2 COD/SO2−

4 ratio respectively. As shown in Figures 4.2
(B), 4.3 (B) and 4.4 (B), after 10 days, the biomass stratification appears visible:
LDSRB(C) and LDSRB(I) prevail in the outer layer of biofilm where sulfate and
lactate remain abundant. In the deepest zone of the biofilm, characterized by a low
level of sulfate and lactate, due to substrate diffusion coupled with microbial
consumption, the MA compete for space with other microbial species. Indeed the
MA are mostly present in the deepest zone of the biofilm where the optimal
conditions for their growth are established. With a COD/SO2−

4 ratio of 0.5 (Figure
4.2) the AB are present at the inner layer of the biofilm, where the concentration
of sulfate is lower while both LDSRB(C) and LDSRB(I) are found to be
predominant at the outmost layer of the biofilm. In particular, LDSRB(C) and
LDSRB(I)represent the most abundant species in the biofilm showing that in the
presence of excess sulfate, the quantitative oxidation of lactate to acetate or CO2

coupled to sulfate reduction is the dominant reaction.
A similar result has been achieved in [170], where the authors experienced

high participation of SRB, and in particular of LDSRB(I), on COD removal in a
down–flow fluidized–bed reactor. Concerning sulfate reduction, it is possible to
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Figure 4.4: Substrate trends in the biofilm (A) and bacterial volumetric fractions
(B) in the biofilm for a COD/SO2−

4 ratio = 2. Dotted line: sulfate concentration;
dashdot line: COD; continuous line: acetate concentration.

note that sulfate is not completely depleted within biofilm, probably due to the
presence of incomplete oxidizers, while lactate-COD concentration drops to zero
in 200 μm (Figure 4.2 (A)). As shown in Figure 4.2 (B), methanogenesis and
acetogenesis are not completely suppressed; however the volume fraction of AB
is sensitively reduced respect to the initial condition and this trend is expected to
exacerbate with time. On the other hand, the formation of a zone in the inner part
of biofilm characterized by abundance of acetate and lack of lactate-COD could
support the methanogenic metabolism allowing the methanogens to remain
present in the biofilm. According to the experience of [166], acetate production
can be recognized as the rate-limiting step in such a sulfate-reducing process.

In Figure 4.3 and 4.4 is shown the response of the multispecies biofilm to the
increasing COD/SO2−

4 ratio. As experienced in [166], the excess of lactate over
sulfate continuously guaranteed the required carbon source for SRB to reduce
sulfate to sulfide. The exposure to higher COD/SO2−

4 ratios was enough for the
development of substantial sulfidogenesis leading to sulfate depletion (Figures 4.3
(A), 4.4 (A)). In this condition, acetogens do not experience competition for the
remaining COD; therefore the area of acetogenic within the biofilm becomes
broader at increasing COD/SO2−

4 ratios (Figures 4.2 (B), 4.3 (B) and 4.4 (B)).
This occurs since the increase of the COD load results in a higher lactate
concentration throughout the biofilm thickness. A similar shift in microbial
population has been found in a continuously stirred tank reactor fed with a
COD/SO2−

4 ratio of 1.94 [171].

4.5 Conclusions

A mathematical model able to simulate the physical, chemical and biological
processes prevailing in a multispecies sulfate reducing biofilm under dynamic
conditions has been presented. Special attention has been given to the competition
between sulfate reduction, acetogenesis and methanogenesis. The effects of the
variations of the operational conditions in terms of COD/SO2−

4 ratio on the
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bacterial competition can be properly predicted with this model, which thus can
be used for process optimization and control. The simulation results confirm that
COD/sulfate ratio represents a crucial variable in the optimization of lactate
utilization via oxidation in preference to fermentation and in the maximization of
the efficiency of biological sulfate reduction.
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Symbol Definition Value Units Reference

μmax
LDSRB(C)

Maximum specific growth 4.9 d−1 [172]
rate of LDSRB(C)

μmax
LDSRB(I)

Maximum specific growth 4.9 d−1 [172]
rate of LDSRB(I)

μmax
AB Maximum specific growth 2.88 d−1 [173]∗

rate of AB
μmax
MA Maximum specific growth 8 d−1 [173]

rate of MA
YLDSRB(C),Lac Yield of LDSRB(C) 0.12 g COD g−1 COD [172]

on Lactate
YLDSRB(I),Lac Yield of LDSRB(I) 0.12 g COD g−1 COD [172]

on Lactate
YAB,Lac Yield of AB on Lactate 0.04 g COD g−1 COD [173]∗

YMA,Ace Yield of MA on Acetate 0.05 g COD g−1 COD [173]

K
LDSRB(C)

S,Lac Half saturation coefficient 0.015 mg COD l−1 [172]
of LDSRB(C) on Lactate

K
LDSRB(I)

S,Lac Half saturation coefficient 0.015 mg COD l−1 [172]
of LDSRB(I) on Lactate

K
LDSRB(C)

S,SO4
Half saturation coefficient 0.00045 mg l−1 [172]
of LDSRB(C) on Sulfate

K
LDSRB(I)

S,SO4
Half saturation coefficient 0.00045 mg l−1 [172]
of LDSRB(I) on Lactate

KAB
S,Lac Half saturation coefficient 11 mg COD l−1 [173]∗

of AB on Lactate
KMA

S,Ace Half saturation coefficient 0.15 mg COD l−1 [173]
of MA on Acetate

KdLDSRBC
Decay constant of 0.004 d−1 [172]

LDSRB(C)

KdLDSRBI
Decay constant of 0.004 d−1 [172]

LDSRB(I)

KdAB
Decay constant of AB 0.002 d−1 [173]∗

KdMA
Decay constant of MA 0.002 d−1 [173]

DLac Lactate diffusion coefficient 7.32·10−5 m2d−1 [57]
in biofilm

DSO4 Sulfate diffusion coefficient 9.80·10−5 m2d−1 [57]
in biofilm

DAce Acetate diffusion coefficient 8.35·10−5 m2d−1 [57]
in biofilm

∗adapted from

Table 4.3: Kinetic, stoichiometric and diffusion coefficients used in the model



Chapter 5

Modelling microbial population
dynamics in multispecies biofilms
including Anammox bacteria

A 1-D mathematical model for analysis and prediction of microbial interactions
within multispecies biofilms including Anammox pathway is presented. The model
combines the related processes of organic carbon oxidation, denitrification,
nitrification and Anammox and phenomena of substrate reaction and diffusion,
biomass growth and advection, detachment. The biofilm growth process is
governed by nonlinear hyperbolic PDEs and substrate dynamics are dominated
by semilinear parabolic PDEs. It follows a complex system of PDEs on a free
boundary domain. Equations are integrated numerically by using the method of
characteristics as strongly suggested by the qualitative analysis of the free
boundary value problem. Mass conservation equation plays an important role in
checking the accuracy of simulations. The model has been applied to simulate
Anammox competition and to evaluate the influence of substrate diffusion on
microbial stratification. Specific scenarios are analyzed. The results reveal that in
a thick multispecies biofilm, including heterotrophic, aerobic autotrophic
nitrifying and Anammox bacteria, oxygen diffusion limitation determines the
formation of both aerobic and anoxic microenvironments favouring interspecies
competition. In contrast, oxygen excess causes a disturbance on microbial
interactions leading to Anammox bacteria loss. The model predictions may help
engineers or operators to have a better insight into biofilm dynamics in order to
optimize process design or practical operation.

A modified version of this chapter was published as:
Mattei, M.R., Frunzo, L., D’Acunto, B., Esposito, G. and Pirozzi, F. (2015). Modelling microbial
population dynamics in multispecies biofilms including Anammox bacteria. Ecological Modelling,
2015, vol. 304, pp. 44-58, DOI: 10.1016/j.ecolmodel.2015.02.007.
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5.1 Introduction

Biofilm research had been neglected for a long time until microbiologists
rediscovered these fascinating communities almost 40 years ago [174]. In the past
decades the number of studies performed on surface-associated microbes has
increased considerably and today, we recognize that most, if not all, microbial
species can form biofilms [21, 175]. These sessile communities form anywhere
there is a surface with a little moisture and some nutrients and nearly always
harbour a multitude of microbial species, which compete or coexist thanks to
niche differentiation.

The elaborate biofilm structure constitutes the ideal environment for the
development of different microbial groups which may be confronted with
dynamic changes in nutrient profile, either due to environmental changes, or due
to the metabolism and migration of other populations [176]. In multispecies
biofilms, different species may be separated into discrete layers, according to their
metabolic activities, affinity for substrates, growth rates and sensitivity towards
inhibiting substances [177]. A striking example is provided by the stratification
which manifests itself between aerobic and anaerobic species in the oxygenated
and anoxic regions of biofilms of wastewater treatment reactors. In these systems,
the relative abundance of different microbial populations strongly depends on the
metabolic potential of the inhabiting strains which contribute themselves to local
nutrient composition through metabolism and growth. As a consequence, while
bacteria maximize their growth on the available nutrients, they might change the
ratio of components therein, thereby creating conditions that favor the
development of other microbial groups [176].

The inherent synergical interactions characterizing natural biofilm
communities have shown to facilitate the simultaneous removal of various
pollutants in wastewater treatment reactors. In several biofilm-based processes,
redox stratification is experienced due to the formation of strong concentration
gradients of both electron donors and acceptors, and the accumulation of
metabolic waste products, that can be used as growth substrates by other
microorganisms. This has been highlighted, for instance, in the case of the
ANaerobic AMMonia OXidation (Anammox) process, which has become one of
the most promising innovative techniques for the biological removal of nitrogen
from wastewater. In the absence of molecular oxygen, Anammox bacteria
catalyze this novel process, where ammonia is anaerobically oxidized to nitrogen
gas, with nitrite as the electron acceptor. In their environments, Anammox
bacteria receive the key substrates (ammonium and nitrite) in cooperation and
competition with other N-cycle microorganisms. Environmental studies have
provided strong evidence for the close cooperation between aerobic
ammonia-oxidizing bacteria, which inhabit the aerobic regions of biofilms, and
Anammox bacteria, the first producing one of the substrates (nitrite) for the
second [178]. This cooperative action has laid the foundation for a new
wastewater treatment technology, whose performance is closely linked to complex
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and delicate metabolic interactions within biofilms. Careful microenvironment
control is required due to the high sensitivity of Anammox bacteria to oxygen and
nitrite, and the slow specific growth rate of this microbial strain. Consequently,
evaluating the competition in population dynamics represents a crucial step in
optimizing the control criteria of Anammox process.

Mathematical models represent useful tools to explore the microbial
competition and coexistence in multispecies biofilms. Many biofilm models
including Anammox metabolism have been presented over the last decades. In
2002, Hao et al. [179] introduced the first biofilm model aimed at evaluating the
dynamics of a multispecies biofilm including Anammox metabolism and
performing a completely autotrophic nitrogen removal. In this model, the
dynamics of heterotrophs were not included. This gap has been filled in by the
same authors in 2004 [180], by investigating the effect of heterotrophic growth on
influent organic substrate on the performance of a partial nitritration-anammox
biofilm reactor. An extension of the previous model was presented by Lackner et
al. [181], who evaluated the growth of heterotrophic bacteria on influent organic
carbon and microbial decay products in both co-diffusion and counter diffusion
systems. Recently, Mozumder et al. [182] have proposed a different version of the
model in which they evaluated the influence of heterotrophic growth on
autotrophic nitrogen removal in a granular sludge reactor.

In this contribution the same approach introduced in [57] was followed, and a
model able to study the Anammox competition in a multispecies biofilm
performing nitrogen removal through partial-nitritation Anammox and COD
degradation has been developed. The effect of heterotrophic growth on the
performance of a nitrifying biofilm has been investigated in previous works. In
most of the cases, heterotrophic denitrification has been modelled via both nitrite
and nitrate. However, as shown by experimental results heterotrophic
denitrification is a sequential process [183]. Indeed only in a recent contribution
[182], a sequential denitrification mechanism has been adopted. The production
of nitrite due to the reduction of nitrate by denitrifying microorganisms has been
found to play a crucial role in the development of Anammox bacteria. Therefore,
we applied the kinetics of denitrification proposed by Kaelin et al. [184] in the
case of planktonic growth, to a multispecies biofilm model. For biomass decay,
the concept of endogeneous respiration has been adopted instead of the
death-regeneration model [180].

The performed experimental results on Anammox biofilm reactors have
shown that the growth of this microbial species is strongly affected by the oxygen
concentration within biofilms resulting from the preceeding interaction between
microbial metabolisms and diffusion. A contributory effect is provided by the
shear stress which erodes the biofilm surfaces exposing the Anammox bacteria to
higher oxygen concentrations internally. In this work, we focused on the dynamic
model behavior of the system under different bulk oxygen concentrations and
shear stress conditions.

The proposed model is based on the widely used 1D dynamic multi-species
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biofilm model introduced by Wanner and Gujer [23] which is suited best to model
situations in which competition between the microbial constituents of the biofilm
matrix is significant. In [27], the authors presented an analysis of solutions to a
free boundary value problem related to the multispecies biofilm model introduced
in [23]. The system of partial differential equations characterizing the model was
discussed by using the method of characteristics. The latter represents an efficient
resolution method for finding analytical and numerical solutions to hyperbolic
partial differential equations. If this method is applied to the free boundary value
problem, arising from biofilm growth, it does not require a coordinate
transformation to fix the size of the domain in the 1D set-up, as proposed by
Wanner and Gujer [23]. Consequently, if the initial phase of biofilm development,
where the biofilm initial length is zero, is considered, no coordinate
transformation is initially possible, but the method of characteristics can still be
applied. Different modelling scenarios have been experimented in order to
evaluate microbial population shifts upon changes in operating conditions.
Changes in the bacterial populations, substrate profiles within biofilm, and hence
in, the nitrogen removal characteristics, have been monitored over time and at
different DO levels and shear stress conditions. The simulations show the ability
of such a model to examine such scenarios and their dynamic effects on biofilm
behavior and performance.

5.2 Biological problem

Nutrient removal has become a big concern for wastewater treatment since the
end of the 20thcentury due to the discharge of nitrogen and phosphorous
compounds-laden wastewater to natural water bodies, that results in many cases in
eutrophication, emissions of nitrous oxide to atmosphere during oxidation of
ammonia and toxicity to aquatic invertebrate and vertebrate species [185, 186].

The eutrophication may be managed and controlled primarily by restricting the
nutrient inputs to natural bodies, by means of appropriate wastewater treatment
plants (WWTPs) and this nutrient loading restriction can be accomplished by a
wide variety of external and internal controls [187].

Nutrient removal efficiency in WWTPs depends on several factors, including
treatment technologies used, influent wastewater characteristics, mechanical and
operational failures and facility design limitations. It represents a special
challenge for WWTPs due to the additional costs associated with the complex
treatment technology and technical designs required to produce effluent
containing low nutrient concentrations [188]. Consequently, new approaches and
techniques have been studied and tested in order to meet the increasingly stringent
discharge standards and to achieve a more sustainable and cost efficient nutrient
removal for a variety of so-called hard-to-treat concentrated nutrient streams,
including sludge digester supernatant, manure, piggery wastewaters and several
industrial wastewater [164, 189].
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Ammonium nitrogen is conventionally removed from wastewater by the
sequential biochemical processes of aerobic autotrophic nitrification, using
molecular oxygen as electron acceptor (conversion of NH+

4 to NO−

2 and further to
NO−

3 ), and anoxic heterotrophic denitrification (conversion of NO−

2 and NO−

3 to
gaseous nitrogen) using organic carbon as electron donor [183, 190]. In general,
the combined system nitrification/denitrification requires considerable amounts of
resources (4.57 kg of O2 and 2-4 kg COD per kg of ammonium nitrogen), results
in a high production of sludge (1 kgV SS/kgN ), depends on external addition of
carbon source to achieve complete denitrification and leads to high costs of
construction, operation and maintenance, since the two steps are usually
accomplished in separate oxic and anoxic units [191, 192].

An innovative and more sustainable biological nitrogen-removal technology,
alternative to the traditional nitrification/denitrification system, the Anammox
process, has been recently discovered in a denitrifying fluidized bed reactor [193]
and ever since then, Anammox has been extensively researched as a promising
method able to overcome the shortcomings of conventional treatments [194]. In
this process ammonium is oxidized with nitrite serving as the electron acceptor
under anaerobic conditions, producing nitrogen gas and nitrate [195]. No addition
of external carbon is required due to the autotrophic nature of these bacteria,
negligible sludge is produced thanks to the low biomass yield, oxygen
requirements are reduced two-fold since only half of ammonium is oxidized to
nitrite and low energy is required as compared to the conventional
nitrification/denitrification process [196, 197].

The growth of Anammox bacteria is strongly influenced by the interaction
with other microbial strains since they need a nearby nitrite source. Indeed, nitrite
plays a crucial dual role in Anammox reaction: it acts as electron acceptor for the
ammonium oxidation and as electron donor for the CO2 reduction to biomass.
Therefore, the application of the Anammox process requires a combination of
aerobic and anaerobic conditions that might be performed in a system consisting
of either two reactors or a single reactor. In the first case the process takes places
in two reactors in series: a partial nitrification reactor where 50% of the
wastewater ammonium content is oxidized to nitrite, and a separate unit for the
anaerobic oxidation of ammonia. In this way the two biological reactors can be
controlled separately, saving 50% on oxygen requirement, 100% on organic
carbon source requirement for denitrification, and producing less sludge
compared to the conventional nitrification-denitrification process [198]. In the
second case both processes occur in the same reactor, like sequencing batch
reactors or biofilm reactors, and the oxygen concentration becomes a key control
for these types of applications, usually named oxygen-limited nitrogen removal
processes. Two processes have been identified to operate in oxygen-limited
conditions in one single reactor and in absence of organic carbon source: i)
completely autotrophic nitrogen removal over nitrite (CANON) [192], which has
been extensively evaluated by simulations [179, 199], and ii) oxygen limited
autotrophic nitrification denitrification (OLAND) [200]. CANON and OLAND
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processes show only minimal difference in stoichiometry, suggesting that they are
based on the same removal pathway. In biofilm-based systems, many reactions are
combined in the same reactor and complex physical interactions exist between the
microorganisms living in the biofilm. All these interactions are linked together by
nitrogen conversions and diffusion gradients. In general, a biofilm-based reactor
operates in continuous conditions since the oxygen levels are governed by
gradients in biofilm systems; the classical nitrification, performed by the
ammonium oxidizers, takes place in the outer aerobic layers while the anaerobic
oxidation occurs in the deeper zones of the biofilm. Anoxic conditions required
for anammox metabolism are established by the oxygen respiration operated by
aerobic ammonium oxidizers. Anammox bacteria, in turn, remove the toxic nitrite
and convert the remaining ammonium into nitrogen gas. These biofilm systems
are characterized by a long biomass retention time which perfectly fits with the
long doubling time of Anammox bacteria and allows the formation of different
substrate concentration gradients in the same reactor [201, 202]. The application
and industrialization of the Anammox process have been restricted by the slow
growth rate of the Anammox bacteria and the widespread inhibition factors
existing in nitrogen-rich wastewater. Indeed, this type of bacteria show high
sensitivity to changing environmental conditions and to the composition of
wastewater making the process more difficult to initiate and recover from
inhibition. Moreover Anammox activity is based on the harmonious and balanced
interaction with other bacteria which can be disturbed and interfere with nitrogen
removal. The behaviour of such a microbial community is complex and depends
on multiple parameters. It is evident that substrate diffusion in the biofilm plays a
crucial role in defining the composition, diversity and dynamics of such biofilm
bacterial communities since it facilitates a variety of microhabitats. In particular,
Dissolved Oxygen (DO) has been recognized as a critical operational parameter
for the Anammox process as it can strongly affect the coexistence and
co-performance of microbial populations with complementary and/or opposed
environmental requirements. Anammox inhibitions can be controlled by proper
measures. Substrate concentration and loading rate control, pH adjustment, sludge
acclimatization, DO and ORP control are all effective in preventing and relieving
Anammox inhibition [203]. However evaluating Anammox process through
experiments would take a long time due to bacteria slow growing rates. Thus, the
use of mathematical modelling is crucially helpful in testing a large variation of
environmental and operational conditions that might influence the process [180].

5.3 Model construction and numerical approach

The proposed model simulates the dynamics of the biological ammonium removal
in a multispecies biofilm. Chemical, physical and biological transient processes
are analyzed. In particular, the model takes into account the oxygen-limited
nitrogen removal process coupled with soluble organic carbon removal by aerobic
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and denitrifying microrganisms, as shown in Figure 5.1. The competition between
heterotrophs and autotrophs in completely autotrophic ammonium removal
processes has been usually neglected [179, 199]; however recent studies have
shown that in autotrophic biofilms up to 50% of the biomass can be heterotrophic
[185] and Anammox bacteria can coexist with denitrifying bacteria
[180, 181, 204]. The inhibition of Anammox bacteria by organic matter can be
defined concentration dependent: at high concentrations of organic carbon
heterotrophic bacteria are able to outcompete Anammox bacteria due to their
faster growth; at low concentrations of organic matter heterotrophs can not
dominate and outcompete Anammox bacteria and different biological reactions
are promoted. However, the microbial interactions in such a multispecies biofilm
are very complex and the coexistence of Anammox bacteria with other processes
is related to many parameters. In this work, the influence of organic carbon and
nitrogen loading rates and DO concentration on biofilm dynamics have been
considered.

Figure 5.1: Main microbial interactions of the simulated biological process

The proposed model takes into account the activities of heterotrophs and
autotrophs living in a biofilm, evaluating the interactions between the related
processes: organic carbon oxidation, denitrification, nitrification and Anammox.
Five reacting components are simultaneously considered: ammonium (S1), nitrite
(S2), nitrate (S3), soluble organic carbon (S4) and oxygen (S5). Organic carbon
concentration is expressed in terms of Chemical Oxygen Demand (COD) which
represents a measurement conventionally used in environmental chemistry to
characterize indirectly the amount of organic compounds [205]. The
oxygen-limited nitrogen removal process involves the growth of three autotrophic
organisms: aerobic ammonia-oxidizing bacteria AeAOB (X1), aerobic
nitrite-oxidizing bacteria NOB (X2) and anaerobic ammonia-oxidizing bacteria
AnAOB (X3), taking also into account the related decay and endogenous
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respiration processes. COD is removed by both aerobic oxidation and
denitrification, performed by facultative heterotrophic bacteria HB (X4). Inert
residues Inerts (X5) are also taken into account. According to [184], anoxic
denitrification involves two reactions including a first step from nitrate to nitrite
and second from nitrite to molecular nitrogen. Nitrite production as an
intermediate of the denitrification process becomes of interest since Anammox
competes for nitrite with denitrification. Only anoxic endogenous respiration over
nitrate is considered for the autotrophic microorganisms, while all anoxic
processes for heterotrophic microorganisms are doubled in a first step from nitrate
to nitrite and second from nitrite to molecular nitrogen. The biofilm growth is
governed by the following equations [23, 27]:

∂Xi

∂t
+

∂

∂z
(uXi) = ρirM,i(z, t,X,S), 0 ≤ z ≤ L(t), t > 0, i = 1, 2, 3, 4, 5,

(5.1)
∂u

∂z
=

5∑
i=1

rM,i(z, t,X,S), 0 < z ≤ L(t), t > 0, (5.2)

where Xi = ρifi(z, t) denotes the concentration of the microbial species and inert
residues i = 1, 2, 3, 4, 5, fi is the volume fraction of microbial species i∑5

i=1 fi = 1, L(t) is the thickness of biofilm, ρi the biofilm constant density,
Sj(z, t) is the concentration of substrate j = 1, 2, 3, 4, 5, u(z, t) is the velocity of
the microbial mass displacement with respect to the biofilm support interface,
rM,i(z, t,X,S) represent the biomass growth rates, X = (X1, X2, X3, X4, X5)
and S = (S1, S2, S3, S4, S5).

The biomass growth rates are given by:

rM,1 = (μ1 − b1 − c1)X1, (5.3)

rM,2 = (μ2 − b2 − c2)X2, (5.4)

rM,3 = (μ3 − b3 − c3)X3, (5.5)

rM,4 = (μ4,1 + μ4,2 + μ4,3 − b4 − c4,1 − c4,2)X4, (5.6)

while for inert residues

rM,5 = fI(b1+ c1)X1+fI(b2+ c2)X2+fI(b3+ c3)X3+fI(b4+ c4,1+ c4,2)X4,
(5.7)

where μ1, μ2, and μ3 are the net biomass growth rates for biomass X1, X2 and
X3; μ4,1, μ4,2 and μ4,3 are the net biomass growth rates for biomass X4 in aerobic
(μ4,1) and anoxic conditions over nitrate (μ4,2) and nitrite (μ4,3); b1, b2, b3 and b4
are the Aerobic Endogenous respiration rates for the single microbial species; c1, c2
and c3 are the Anoxic Endogenous respiration rates over nitrate for the autotrophic
microorganisms; c4,1 and c4,2 are the Anoxic Endogenous respiration rates for X4,
over nitrate and nitrite respectively. They are given by:
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μ1 = μmax,1
S1

K1,1 + S1

S5
K1,5 + S5

, (5.8)

μ2 = μmax,2
S2

K2,2 + S2

S5
K2,5 + S5

, (5.9)

μ3 = μmax,3
K3,5

K3,5 + S5

S1
K3,1 + S1

S2
K3,2 + S2

, (5.10)

μ4,1 = μmax,4
S4

K4,4 + S4

S5
K4,5 + S5

, (5.11)

μ4,2 = β1 · μmax,4
K4,5

K4,5 + S5

S4
K4,4 + S4

S3
K4,3 + S3

, (5.12)

μ4,3 = β2 · μmax,4
K4,5

K4,5 + S5

S4
K4,4 + S4

S2
K4,2 + S2

, (5.13)

b1 = bm,1
S5

K1,5 + S5
, (5.14)

b2 = bm,2
S5

K2,5 + S5
, (5.15)

b3 = bm,3
S5

K3,5 + S5
, (5.16)

b4 = bm,4
S5

K4,5 + S5
, (5.17)

c1 = η · bm,1
K1,5

K1,5 + S5

S3
K4,3 + S3

, (5.18)

c2 = η · bm,2
K2,5

K2,5 + S5

S3
K4,3 + S3

, (5.19)

c3 = η · bm,3
K3,5

K3,5 + S5

S3
K4,3 + S3

, (5.20)

c4,1 = η1 · bm,4
K4,5

K4,5 + S5

S3
K4,3 + S3

, (5.21)

c4,2 = η2 · bm,4
K4,5

K4,5 + S5

S2
K4,2 + S2

, (5.22)

where μmax,i denotes the maximum net growth rate for biomass i, Ki,j the affinity
constant of substrate j for biomass i, β1 and β2 the reduction factor for
denitrification NO3 − NO2 and NO2 − N2 respectively, bm,i the
decay-inactivation rate for biomass i, η the anoxic reduction factor for bm,i for
autotrophic microorganisms, η1 and η2 the reduction factors for bm,4 in anoxic
conditions NO3 −NO2 and NO2 −N2 respectively, fI the inert content in lysis
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of biomass.
The diffusion of substrates is governed by the equations:

∂Sj
∂t

−Dj
∂2Sj
∂z2

= rS,j(z, t,X,S), 0 < z < L(t), 0 < t ≤ T, j = 1, 2, 3, 4, 5

(5.23)
where Dj denotes the diffusivity coefficient and rS,j(z, t,X,S) the net conversion
rate of substrate j.

These are expressed by:

rS,1 = (−
1

Y1
−iN,B)μ1X1+(−

1

Y3
−iN,B)μ3X3−iN,B(μ2X2+μ4,1X4+μ4,2X4+μ4,3X4)

+(iN,B− iN,IfI)[(b1+c1)X1+(b2+c2)X2+(b3+c3)X3+(b4+c4,1+c4,2)X4],
(5.24)

rS,2 =
1

Y1
μ1X1 −

1

Y2
μ2X2 + (−

1

Y3
−

1

1.14
)μ3X3 − (1−

1

Y4
)

1

1.14
μ4,2X4+

(1−
1

Y4
)

1

1.72
μ4,3X4 +

1− fI
1.14

c4,1X4 −
1− fI
1.72

c4,2X4, (5.25)

rS,3 = (
1

1.14
)μ3X3 + (1−

1

Y4
)

1

1.14
μ4,2X4 +

1

Y2
μ2X2

−
1− fI
2.86

(c1X1 + c2X2 + c3X3)−
1− fI
1.14

c4,1X4, (5.26)

rS,4 = −
1

Y4
(μ4,1X4 + μ4,2X4 + μ4,3X4) (5.27)

rS,5 = (1−
3.43

Y1
)μ1X1 −

1

Y4
μ4,1X4 + (1−

1.14

Y2
)μ2X2

−(1− fI)(b1X1 + b2X2 + b3X3 + b4X4) (5.28)

where Yi denotes the yield for biomass i, fI denotes the inert content in lysis
biomass i, iN,B is Nitrogen content in biomass, iN,I is Nitrogen content in inert
biomass.

The following initial-boundary conditions will be considered for equations
(5.1), (5.2) and (5.21)

Xi(z, 0) = ϕi(z), u(0, t) = 0, 0 ≤ z ≤ L0, t ≥ 0, i = 1, 2, 3, 4, 5, (5.29)
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Sj(z, 0) = Sj0(z), 0 ≤ z ≤ L0, j = 1, 2, 3, 4, 5, (5.30)

∂Sj
∂z

(0, t) = 0, Sj(L(t), t) = SjL(t), 0 < t ≤ T, j = 5, (5.31)

∂Sj
∂z

(0, t) = 0,
∂Sj
∂z

(L(t), t) = Gj , 0 < t ≤ T, j = 1, 2, 3, 4 (5.32)

The functions ϕi(z), i = 1, ..., 5, represent the initial concentrations.
Condition (5.29)2 follows from the relationship gi(0, t) = u(0, t)Xi(0, t) of the
biomass flux at z = 0. The functions Sj0(z) represent the initial values of
substrates. The function SjL(t) in (5.31)2 is the oxygen value in the bulk liquid.
Gj in (5.32)2 represent the substrate fluxes and reproduce the operational
conditions of such a biofilm-based system. The free boundary evolution is
governed by the following ordinary differential equation:

dL

dt
(t) = u(L(t), t)− σ(L(t), t), (5.33)

with initial condition:
L(0) = L0, (5.34)

where L0 denotes the initial biofilm thickness and σ(L(t), t) represent the velocity
at witch biomass is exchanged between biofilm and bulk liquid and is assumed as
a known function of L and t. in this work it takes the expression of

σ(L(t), t) = λL2(t), (5.35)

where λ is the shear constant.
As proved in [27], by using the method of characteristics the equations (5.1)

can be written as:

d

dt
Xi(z(z0, t), t) = Fi(z, t,X,S), 0 ≤ z0 ≤ L0, t > 0, i = 1, ..., 5 (5.36)

where the characteristic lines z = z(z0, t) are defined as

∂z

∂t
= u(z(z0, t), t), z(z0, 0) = z0, 0 ≤ z0 ≤ L0, t > 0. (5.37)

From this definition and from the no-flux condition at the substratum (5.29)2, it
follows that the characteristic starting at z0 = 0, is by necessity z = 0.
Consequently, since the method of characteristic is able to provide the solution
along any characteristic, this method of course gives the solution of the system for
z = 0 at any t. So, the resolution of the biological problem does not require any
boundary condition for z = 0, since the solution is derived uniquely by the initial
condition. Mathematical models including prescribed boundary conditions on fi
for z = 0 and z = L(t) could be considered, although it is not required by the
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biological process and it could lead to cases without solutions.
The numerical simulations have been performed by applying the method of

characteristics to the system of non-linear equations (5.1), and by using the Euler
explicit method for the system of semi-linear equations (5.23) [150]. This method
was first introduced in [57], showing great efficiency and accuracy, and could be
applied to evaluate the dynamics of biofilms with zero initial thickness,
overcoming the lack of the current models [30]. The great accuracy of the method
is strictly connected to the existence of an invariant in the numerical integration.
In particular, let consider equation (5.2) and note that it is equivalent to∑5

i=1 fi = 1, which states the conservation of mass for the whole system. The
evaluation of each bacterial species volume fraction is performed separately along
the characteristics at each time step integration, allowing us to use equation∑5

i=1 fi = 1 as a check control and to evaluate the error.
The overall model stoichiometry and kinetics for the one-dimensional biofilm

model and the respective parameter values used for numerical simulations, derive
from published literature and are reported in Table 5.1 and Table 5.2.

For all the simulations reported in this paper, the model assumes an initial
biofilm thickness of 300 μm and appropriate boundary conditions for the biological
process modeled. Ammonium and COD were supplied from the bulk liquid at
defined loading rates; DO at the biofilm-bulk liquid interface was fixed as a model
input parameter so the oxygen load was not adjusted to reach optimal nitrogen
removal. The influent contained no nitrite or nitrate. Ammonium and nitrate do
not inhibit the Anammox process but nitrite concentration exceeding 100 mgN/L
can inactivate it. However, in reality, nitrite concentration rarely reaches this level,
therefore the nitrite inhibition on the Anammox process was not included in the
model. An initial arbitrary biomass distribution has been adopted in order to prove
the dynamic response of the model which tends to reach an equilibrium that is not
affected by the initial conditions. The microbial equilibrium is only governed by
the boundary conditions, as for any dynamic model. The adopted initial biofilm
volume fractions are AeAOB 20%, AnAOB 17%, NOB 33%, HB 30%, Inerts 0%.
In all simulations, inert is modeled as another microbial species whose growth
derives from the heterotrophic and autotrophic biomass decay.

The model capability of covering different ranges of input values of different
parameters represents a sort of priority and the model providing more accurate
forecast of the system’s behavior due to inputs of different concentrations with
lowest errors is considered to be the most desirable one [206]. Moreover, an
accurate model should also be able to simulate the effect of variation of
operational parameters, which can strongly affect microbial population dynamics.
For this reason, four different simulation scenarios have been considered. The first
and second scenarios examine the effect of different DO concentrations on the
biofilm dynamics and in particular on microbial interactions and stratification over
time. The following boundary conditions for equation (5.23) have been adopted:
ammonium surface load of 2 gm−2d−1, DO concentration of 3 mg/L (Scenario
1) and 5 mg/L (Scenario 2) in the bulk liquid, COD surface load of 0.2
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gm−2d−1.
The third scenario (Scenario 3) examines the influence of a DO step-change

on biofilm dynamics. The case study is achieved by changing the concentration of
DO in the bulk liquid keeping constant ammonium and COD surface loads. In
particular, during the course of a simulation the DO in the bulk liquid has been
shifted from 3 to 5 mg/L and kept constant in order to study the long-term
exposure effects on population dynamics. The effect of fluctuating conditions
occurs on a much smaller scale than that of biofilm growth. Thus, these
conditions can be observed only as short-term effects. However in a biofilm-based
process including the Anammox pathway, it is important to know the limitations
of the system and whether or not severe disturbances to the system would lead to
the loss of this microbial strain.

The fourth scenario (Scenario 4) evaluates the influence of a shear stress
change due to a difference in hydrodynamics conditions, in the composition,
diversity and dynamics of biofilm bacterial communities. The approach used is
similar to Scenario 3: during the course of a simulation the shear stress constant
has been changed from 50 m−1d−1 to 150 m−1d−1 and the microbial population
dynamics have been analyzed. An overview of the different modeling scenarios
considered in this study is reported in Table 5.3

5.4 Results

Numerical solutions to the free boundary problem stated in Section 5.3 have been
obtained by using the method of characteristics, e.g. [27]. The accuracy of the
solutions was checked by considering the mass conservation equation

∑n
i=1 fi =

1. All the simulations in this section have been performed by using an original
software developed in MatLab platform.

The simulations have been performed to evaluate the dynamic response of the
system in terms of volume fractions of bacteria and substrate concentration trends
within biofilm. In particular the results show the model capability to reveal
microbial stratification in biofilm, evaluating the effect of substrate diffusion on
biomass growth. DO in the bulk liquid has been postulated as the determining
factor for bacteria survival or out-competition. So, different oxygen levels have
been examined in order to explain the selection of different type of bacteria over
time as well as the population shift deriving from a perturbation in the operational
conditions. The sum equal to one of all different biofilm volume fractions in all
the simulations validates the quality of numerical integration. In all the Figures,
the concentration of ammonium, nitrite and nitrate is expressed as mg N/L.

5.4.1 Scenario 1

The simulation results for the multispecies biofilm performance over time at DO
= 3 mg/L are shown in Figures 5.2 and 5.3. After 10 days (Figure 5.2 (A,B))
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biomass stratification is not visible in the inner layers of biofilm structure; in effect
microbial species distribution is still affected by initial conditions.

Figure 5.2: Effects of applied DO (3 mg/L) on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after 10 (A,B), 50
(C,D), 100 (E,F), 150 (G,H) days time simulation.

Substrate concentration trends derive from the combination between diffusion
and microbial metabolism and are characterized by: high ammonia levels in the
entire biofilm since it represents the most abundant substrate in the bulk liquid
(highest loading rate) and diffuses rapidly; it is consumed by AeAOB where there
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is abundance of oxygen and by AnAOB where oxygen concentration drops to
zero; penetrated oxygen profile with high levels in the outer part of biofilm but the
formation of an anoxic zone starts to be visible; high nitrate and nitrite levels in
all the biofilm since they are produced by AeAOB and NOB and diffuse within
the biofilm without be consumed by AnAOB and denitrifying HB, whose
metabolism is still inhibited by oxygen concentration.

Figure 5.3: Effects of applied DO (3 mg/L) on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after 200 (I,L), 250
(M,N), 300 (O,P) days time simulation.

In Figure 5.2 (C,D), the biomass stratification appears visible but the biofilm
has not reached the equilibrium condition since the substrate concentrations,
inside biofilm, are still high and could be used for the growth of new biomass.
AeAOB prevail in the outer layer of biofilm where oxygen and ammonium remain
abundant. In the deepest zone of biofilm, characterized by a low level of oxygen,
the AnAOB compete for space with other microbial species and their volume
fraction increases with time. At 100 days (Figure 5.2 (E,F)) the stratification
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becomes significant and oxygen concentration drops to zero in the bottom of the
biofilm. Nitrite and nitrate concentrations are still high; nitrate represents the
outcome of the biological process and is consumed only by denitrifying bacteria,
whose growth is limited by the low COD concentration. Nitrite is produced in the
outer part of the biofilm by AeAOB; it can be consumed by NOB, which are
out-competed by AOB and aerobic HB for oxygen, denitrifying HB and AnAOB
which experience respectively limitation for COD and ammonium. At 150 days
(Figure 5.2 (G,H)) the stratification is more defined than after 100 days but not
completely developed. In Figure 5.3 (I,M) it is already evident that in the inner
layer of biofilm NOB are outcompeted by AnAOB and Inerts volume fraction is
increasing over time. NOB tend to occupy the central zone where oxygen is not
zero and where there is abundance of nitrite which are produced by AeAOB.
Figure 5.3 (O,P) shows the typical stratification of a mature biofilm with a
simulation time of 300 days: the AeAOB occupy the outer layer of biofilm
out-competing the other microbial species; the HB are mostly present in the
central zone of biofilm where the optimal conditions for their growth are
established; in the deepest zone of biofilm the AnAOB out-compete NOB and HB
since their supply (nitrite and ammonium) is more abundant. Since most of the
influent COD is oxidized at the outmost layer of the biofilm, denitrification by
heterotrophs plays only a minor role in this biofilm system.

5.4.2 Scenario 2

Figures 5.4 and 5.5 display variations of biomass distribution and substrate
concentration trends within biofilm during 300 days of system operation at DO =
5 mg/L. Similarly to Figure 5.2, after few days biofilm population structure is
still influenced by the initial condition (Figure 5.4 (A)), but as showed in Figure
5.4 (B), the biofilm experiences a fully penetrated oxygen profile. This diversity
strongly reflects on microbial interactions and in particular on AnAOB
metabolism. In fact, the AnAOB volume fraction decreases over time until
reaching the completely loss from the reactor (Figure 5.4 (A,C,E,G), Figure 5.5
(I,M,O)). Figure 5.4 (B,D,F,H) and Figure 5.5 (L,N,P) provide the variations of
substrate concentrations over time. Ammonium and COD concentrations are low
within biofilm in all the simulations. Nitrate concentration keeps higher compared
to the results achieved for DO =3 mg/L; this trend is strictly connected with the
new biofilm microbial composition: nitrate is produced by NOB which experience
a perfect survival condition thanks to the simultaneous presence of excess nitrite,
produced by AeAOB, and oxygen. The NOB competition for nitrite with AnAOB
and for oxygen with AeAOB is relieved, and the cells can start to produce nitrate.
Nitrite concentration keeps lower compared to the previous results as it is
oxidized by NOB whose metabolism is characterized by higher rate than AnAOB
consumption rate. The biofilm stratification starts to be evident after 50 days and
reaches the following expected configuration (Figure 5.4 (E,G), Figure 5.5
(I,M,O)): the AeAOB continue to occupy the outer layer of biofilm out-competing
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the other microbial species; the HB still occupy the central zone of biofilm where
the COD oxidation takes place; the deepest zone of biofilm does not experience
shortage of oxygen so the AnAOB are out-competed by NOB. The inert fraction
increases over time mostly in the deepest zone because of AnAOB decay process.

Figure 5.4: Effects of applied DO (5 mg/L) on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after 10 (A,B), 50
(C,D), 100 (E,F), 150 (G,H) days time simulation.
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Figure 5.5: Effects of applied DO (5 mg/L) on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after 200 (I,L), 250
(M,N), 300 (O,P) days time simulation.

5.4.3 Scenario 3

Figures 5.6 and 5.7 show the results of a biofilm which experienced an increase in
the DO value. The simulation has been run considering as initial condition the
results of the 100 days time simulation with DO = 3 mg/L (Figure 5.2 (E,F)) and
assuming as boundary conditions DO = 5 mg/L, ammonium surface load of 2
gm−2d−1, COD surface load of 0.2 gm−2d−1. The program run for 300 days and
the results clearly indicate that there is no significant difference in the biomass
population between Figure 5.5 (O) and Figure 5.7 (O). This is caused by the fact
that the dynamics of the problem are influenced only by the boundary conditions,
which determine the achievement of the same final microbial distribution. This
result marks the great accuracy of the numerical approach used. Figure 5.6
(A,C,E,G) and Figure 5.7 (I,M,O) show that prolonged exposure to high oxygen
level can lead to the loss of AnAOB from the reactor. In particular, Figure 5.7 (I)
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indicates that there is still anaerobic ammonium activity after 250 days of oxygen
excess, albeit at a low rate, and the interactions between AeAOB and AnAOB
could be restablished as soon as the oxygen limitation had been relieved.

Figure 5.6: Effects of a DO change from 3 mg/L (maintained over 100 days) to 5
mg/L on bacterial population distribution (left) and substrate concentration trends
(right) within biofilm after 10 (A,B), 50 (C,D), 100 (E,F), 150 (G,H) days time
simulation.

The ability of the system to tolerate oxygen excess for up to 250 days without
irreversible damage shows that such a biofilm-based system represents a robust
process for ammonium removal. However, control of aeration plays a crucial role
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in the biofilm population dynamics and a good DO control is essential to obtain a
good N-removal efficiency in this type of biofilm-based systems.

Figure 5.7: Effects of a DO change from 3 mg/L (maintained over 100 days) to 5
mg/L on bacterial population distribution (left) and substrate concentration trends
(right) within biofilm after 200 (I,L), 250 (M,N), 300 (O,P) days time simulation.

5.4.4 Scenario 4

The main objective of this scenario is to study the population dynamics of a biofilm
subjected to variable shear stress. The simulation has been run considering as
initial condition the results of the 100 days time simulation with DO = 3 mg/L
(Figure 5.2 (E,F)). The shear stress constant has been increased from 50 m−1d−1

to 150m−1d−1 and kept constant for all the course of the simulation. The results in
terms of biofilm composition and substrate profiles as a function of time are shown
in Figures 5.8 and 5.9. Results clearly demonstrate a link between shear stress,
diffusion and composition of the microbial communities.
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Figure 5.8: Effects of a change in applied shear stress constant from 50m−1d−1

(maintained over 100 days) to 150m−1d−1 on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after 10 (A,B), 50
(C,D), 100 (E,F), 150 (G,H) days time simulation.

The effect of shear stress on biofilm physical and microbial properties may be
explained by physiological adaptation mechanisms of the same microbial species
in the biofilm and/or change in the microbial composition of biofilms. In
particular at low shear (Figures 5.2 and 5.3) biofilm displays a high diversity level
suggesting that the biofilm maturation stage has already begun; at high shear
stress (Figures 5.8 and 5.9) diversity decreases so that one species can dominate
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the bacterial community. Thereby, decrease in diversity in response to shear stress
alteration may be explained by the fact that high detachment forces lead to the
formation of a thinner biofilm characterized by a fully penetrated oxygen profile
(Figure 5.8 (B,D,F,H), Figure 5.8 (L,N,P)).

Figure 5.9: Effects of a change in applied shear stress constant from 50m−1d−1

(maintained over 100 days) to 150m−1d−1 on bacterial population distribution
(left) and substrate concentration trends (right) within biofilm after 200 (I,L), 250
(M,N), 300 (O,P) days time simulation.

The higher concentration of oxygen inhibits Anammox metabolism and
determines the loss of this bacterial group after 300 days (Figure 5.9 (O,P)). At
the same time, the oxygen availability leads to the formation of a thicker aerobic
zone, ideal for the growth of AeAOB and NOB (Figure 5.8 (A,C,E,G), Figure 5.9
(I,M,O)). The concentration of nitrite keeps lower than Figure 5.2 (B,D,F,H) and
Figure 5.3 (L,N,P) while nitrate still represents the main outcome of the overall
process.
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5.5 Discussion

The potential of the Anammox technology to perform autotrophic nitrogen
removal has been widely demonstrated by the extensive experimental activity
carried out during the last decades. A summary of the experimental studies
described in literature can be found in [207]. Nevertheless, the application and
industrialization of the Anammox process have been restricted by the long
start-up periods due to the slow growth rate of the Anammox bacteria and the
widespread inhibition factors existing in nitrogen-rich wastewater. Indeed, this
type of bacteria show high sensitivity to changing environmental conditions and
to the composition of wastewater making the process more difficult to initiate and
recover from inhibition [208]. Moreover, Anammox activity is based on the
harmonious and balanced interaction with other bacteria which can be disturbed
and interfere with nitrogen removal. The behavior of such a microbial community
is complex and depends on multiple parameters [207]. Therefore, the
mathematical model could serve as a support tool to gain essential information in
the identification of the key factors affecting the efficiency and stability of the
process. The mathematical model proposed in this paper has been applied to
simulate the Anammox bacteria interactions in a multispecies biofilm including
heterotrophic and autotrophic nitrifying bacteria. The main objective was to
provide a better understanding of the ecophysiological interactions establishing
between nitrifiers, Anammox bacteria and heterotrophs in a bofilm treating
wastewaters characterized by low organic matter content and high nitrogen
concentration.

The simulation results have shown that substrate diffusion in the biofilm plays
a crucial role in defining the composition, diversity and dynamics of such biofilm
bacterial communities since it facilitates the formation of various
microenvironments [207]. In particular, Dissolved Oxygen (DO) has been
effectively recognized as a critical operational parameter for the Anammox
process [209, 210, 211] as it can strongly affect the coexistence and
co-performance of microbial populations with complementary and/or opposed
environmental requirements [212, 213]. More precisely, the growth of Anammox
bacteria has been found to be favored by the formation of zones in the biofilm
characterized by different substrate concentration levels, as shown in Figures 5.2
and 5.3. This is confirmed by extensive in-situ experimental activity carried out
on biofilm based reactors, which clearly indicates a distinct microdistribution of
microorganisms within the biofilm [211, 212, 214, 215, 216].

The effects of DO on microbial stratification are different depending on the
conditions applied. Under oxygen-limited conditions (Figures 5.2, 5.3), the
oxygen is consumed in the outer layer of the biofilm by AeAOB, NOB and
heterotrophs and thus does not penetrate the biofilm completely. Therefore, the
Anammox process can be performed in the anoxic layers making use of the
produced nitrite that diffuses further into the biofilm. Similar results have been
found in [214] where microbiological analysis demonstrated that the aerobic
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ammonia oxidizers are located at the surface layer of the aggregate, while
anaerobic ammonia oxidizers occupy most the anoxic interior parts. Competitions
between AeAOB, NOB and AnAOB occur for oxygen, ammonium as well as
nitrite [217]. The regions where oxygen and nitrite levels are low, while
ammonium remains not limiting, constitute the ideal competitive environment
between these microbial species, since under these conditions NOB are not
favored as they have to compete for both electron donor (nitrite) and electron
acceptor (oxygen). As shown in Figures 5.2 and 5.3, NOB do not compete very
effectively with Anammox bacteria for nitrite and are most likely limited by the
available oxygen [212]. This implies that only a part of the produced nitrite is
further oxidized to nitrate by NOB. Therefore, both ammonium and nitrite can
diffuse to the lower anoxic part where the Anammox process takes place [212]. A
possible explanation for the limited activity of NOB could be related to the
difference in oxygen half saturation constant for AeAOB and NOB [218] or to the
inhibition that hydroxylamine severely exerts on NOB [219]. In the deepest
anoxic zones of the biofilm, AnAOB compete with denitrifying microorganisms
and depend on AeAOB for nitrite, if ammonium is not limiting for the process.
Heterotrophic bacteria experience a double limitation: they compete for oxygen
with AeAOB and NOB in the aerobic layer of the biofilm, and for nitrite in the
anoxic zone. As shown in Figures 5.2 and 5.3, heterotrophic activity is negatively
influenced by the assumed low influent organic matter concentration: heterotrophs
are not able to dominate in this system and outcompete Anammox organisms
[220]. However, when a higher concentration of organic carbon is present in
combination with ammonium and nitrite, we expect a faster growth of
heterotrophic denitrifiers which would eliminate Anammox bacteria [221, 222].
The threshold concentration for organic carbon in which denitrifiers outcompete
Anammox bacteria differs from report to report [207]. Under excess of oxygen,
the AeAOB and heterotrophic bacteria are not able to consume all the available
oxygen, which can inhibit Anammox bacteria determining temporary nitrite
accumulation. The simultaneous presence of excess nitrite and oxygen favors the
growth of NOB, and the co-performance of AnAOB and AeAOB is drastically
reduced (Figures 5.4, 5.5). Vàsquez-Padìn et al. [215] used microsensors to
measure the oxygen and nitrite concentrations inside the biofilm at different DO
levels. For nitrite, they measured a clearly visible nitrite peak in the nitrification
zone, corresponding to the external layers of the biofilm, and a reduced
concentration in the Anammox zone where nitrite were consumed together with
ammonium under anoxic conditions. For oxygen, they observed in all the cases a
curve profile due to the combination of the internal diffusion with the biological
reaction. Similar results are visible in Figures 5.4 - 5.9. Under oxygen-limited
conditions, they found out that the high oxygen demand in the surface layer, due
to the activity of AeAOB, allowed the formation of an anoxic zone where the
Anammox process could take place. They also observed an increased oxygen
penetration depth with a DO level in the bulk liquid ranging from 1.5 to 35.2
mgO2L

−1. However in all the cases, the biofilm never experienced a fully
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penetrated oxygen profile and the Anammox bacteria could always survive in the
inner part of the biofilm. Conversely, Figures 5.4-5.7 show that the prolonged
exposure to a DO level of 5 mgO2L

−1 would lead to the loss of Anammox
activity, in agreement with Egli et al. [223], who found out that the oxygen
inhibits Anammox metabolism reversibly at low oxygen levels (air saturation
level of 0.25-2 %) but probably irreversibly at higher levels. This can be explained
by considering that the optimal oxygen concentration for performing a completely
autotrophic nitrogen removal and allow the formation of an anoxic zone, depends
on multiple parameters, such as the biofilm thickness and density, the COD
content, the ammonium surface load, the temperature etc. On this basis,
Vlaeminck et al. [216] studied the effect of aggregate size on the proportion of
microbial nitrite production and consumption. According to our results (Figures
5.8 and 5.9), they observed a higher Anammox activity with increasing aggregate
size.

5.6 Conclusions

A mathematical model able to simulate the physical, chemical and biological
processes prevailing in a multispecies biofilm for ammonia removal is presented.
The model has been focused on the competition between AeAOB, NOB, AnAOB,
and HB into biofilm and is able to evaluate the significant control that diffusion
and DO exert on microbial stratification. Moreover, the proposed model
adequately considers the bioconversion processes in the biological biofilm under
dynamic conditions and it is able to predict the biomass stratification and substrate
concentration trends for different DO levels and operational conditions. High DO
level is responsible for loss of AnAOB from the reactor.

The model reproduces the different timescales at which changes in the
concentrations of soluble components, total biomass and interspecies variations
occur. Equations governing the free boundary value problem have been integrated
numerically and the simulations reveal that the model is able to evaluate properly
the effects that boundary conditions exert on bacterial competition.

In conclusion, the model can be used to optimize the anaerobic ammonia
removal and control the bacterial stability in the system as it provides a qualitative
understanding of microbial species and their activity within the biofilm.
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SYMBOL DEFINITION VALUE UNITS REFERENCE

Y1 Autotrophic yield of AeAOB on
Ammonium

0.150 gCOD/gN [189, 179]

Y2 Autotrophic yield of NOB on Nitrite 0.041 gCOD/gN [189, 179]
Y3 Autotrophic yield of AnAOB on

Ammonium
0.159 gCOD/gN [179]

Y4 Heterotrophic yield 0.63 gCOD/gCOD [224]
fI Inert content in lysis of biomass 0.1 gCOD/gCOD [179, 224]
iN,X N content of Inerts 0.02 gN/gCOD [189, 179]
iN,B N content of biomass 0.07 gN/gCOD [179]
μmax,1 Maximum growth rate of AeAOB 2.05 d−1 [179]
μmax,2 Maximum growth rate of NOB 1.45 d−1 [179]
μmax,3 Maximum growth rate of AnAOB 0.08 d−1 [179]
μmax,4 Maximum growth rate of HB 6.0 d−1 [224]
K1,1 Ammonium affinity constant for

AeAOB
2.4 gNm−3 [179]

K1,5 Oxygen affinity constant for AeAOB 0.6 gO2m−3 [179]
K2,2 Nitrite affinity constant for NOB 5.5 gNm−3 [179]
K2,5 Oxygen affinity constant for NOB 2.2 gO2m−3 [179]
K3,1 Ammonium affinity constant for

AnAOB
0.07 gNm−3 [179]

K3,2 Nitrite affinity constant for AnAOB 0.05 gNm−3 [225]
K3,5 Oxygen inhibiting constant for

AnAOB
0.01 gO2m−3 [179]

K4,4 COD affinity constant for HB 4.0 gCODm−3 [224]
K4,5 Oxygen affinity/inhibiting constant for

HB
0.2 gO2m−3 [224]

K4,2 Nitrite affinity constant for HB 0.5 gNm−3 [184]
K4,3 Nitrate affinity constant for HB 0.5 gNm−3 [184]
bm,1 Aerobic endogeneous respiraton rate

of AeAOB
0.13 d−1 [179]

bm,2 Aerobic endogeneous respiraton rate
of NOB

0.06 d−1 [179]

bm,3 Aerobic endogeneous respiraton rate
of AnAOB

0.003 d−1 [179]

bm,4 Aerobic endogeneous respiraton rate
of HB

0.4 d−1 [179]

η Reduction factor for bm,i of
autotrophs in anoxic conditions

0.5 - [179]

η1 Reduction factor for bm,4 in anoxic
conditions NO3 −NO2

0.8 - adapted from [184]

η2 Reduction factor for bm,4 in anoxic
conditions NO2 −N2

0.8 - adapted from [184]

β1 Reduction factor for denitrification
NO3 −NO2

0.8 - adapted from [184]

β2 Reduction factor for denitrification
NO2 −N2

0.8 - adapted from [184]

Table 5.1: Kinetic and Stoichiometric Parameters used for Numerical Simulations
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Chapter 6

Modelling multispecies biofilms
including new bacterial species invasion

A mathematical model for multispecies biofilm evolution based on continuum
approach and mass conservation principles is presented. The model can describe
biofilm growth dynamics including spatial distribution of microbial species,
substrate concentrations, attachment, and detachment, and, in particular, is able
to predict the biological process of colonization of new species and transport from
bulk liquid to biofilm (or vice-versa). From a mathematical point of view, a
significant feature is the boundary condition related to biofilm species
concentrations on the biofilm free boundary. These data, either for new or for
already existing species, are not required by this model, but rather can be
predicted as results. Numerical solutions for representative examples are
obtained by the method of characteristics. Results indicate that colonizing
bacteria diffuse into biofilm and grow only where favorable environmental
conditions exist for their development.

This chapter was published as:
D’Acunto, B., Frunzo, L., Klapper, I. and Mattei, M.R. (2015). Modeling multispecies biofilms
including new bacterial species invasion. Mathematical Biosciences, 2015, vol. 259, pp. 20-26,
DOI: 10.1016/j.mbs.2014.10.009.
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6.1 Introduction

In both natural and artificial environments microorganisms often exist in an
organized form known as a biofilm. Microbial biofilms are highly structured
habitats consisting of surface-associated microorganisms enclosed in an
exopolysaccharide matrix and organized into microcolonies. In some cases cell
clusters are separated by interstitial voids and channels, which create a
characteristic porous structure. An advantage of attaching to a surface is the
ability to anchor to a preferred environment for bacterial growth. Moreover, the
whole community benefits from the close spatial arrangement of different
bacterial species and the potential for interaction and co-metabolism [1]. This
structure might even be considered as an immobilized enzyme system in which
the milieu and the enzyme activities are constantly changing and evolving to an
approximately steady state [226]. On the way to development of mature biofilm,
substrate concentrations become heterogeneous, allowing formation of
microniches characterized by particular environmental conditions. These
microniches provide growth conditions suitable for new species. The presence of
relatively large channels and pores within the matrix structure might allow the
entry of colonizing cells, present in the bulk liquid, and their establishment within
the biofilm [226]. The newly colonizing cells can swim in the channels within the
biofilm matrix and possibly even within the biofilm itself [227] and find favorable
environmental conditions for growth. Successive colonization processes influence
biofilm structure starting from the initial colonization phase of the substratum
and, over time, affect microbial species distribution, both on the surface and
within the biofilm structure.

The whole process of biofilm formation can be viewed in the context of
primary ecological succession. According to the theory [228] and supported by
experimental evidence, biofilm formation is initiated by pioneering microbial
species which attach stochastically to the surface forming a monolayer. This first
stage in biofilm formation process is characterized by high level of diversity and
can be followed by a secondary colonization of bacteria that benefit from a
protective environment in the biofilm and/or feed on the remnants of other
bacteria [229]. However, species richness is usually found to decline in the
early-middle stages of biofilm development due to microbial competition for
space and other needed resources. Then, subsequently, in more mature
communities, the number of niches again increases due to the formation of
substrate gradients, accumulation of metabolic waste products that can be used as
growth substrates by other microrganisms, and the development of a complex
heterogeneous architecture with greater area for attachment and growth, all of
which promote a second increase of species diversity connected to the appearance
of more specialized populations.

In parallel to experimental investigations, complex mathematical models and
numerical simulations have been developed to investigate development, structures,
and ecological interactions of biofilms. However, little attention has been directed
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towards successional invasion. Here a mathematical model for multispecies
biofilm formation and development is presented that does so. The model is based
on a continuum approach for one space dimension [23, 27, 47, 48, 58] and then
generalized to three-dimensions in [6, 33, 84] with the intention of predicting
biofilm growth, space distribution of species, substrate trends, attachment and
detachment. Important biological processes are added, specifically colonization of
new species diffusing from bulk liquid to biofilm and developing of latent
microbial species within the biofilm. The first was already included in preceding
models, e.g. [47, 70], but only at a high price since boundary conditions for the
invading species were needed on the free boundary. The present model does not
need such data. In fact, rather, boundary values of all species, including the new
ones, are determined self-consistently by the model. The diffusion of colonizing
species from bulk liquid into the biofilm has been described by using a
diffusion-reaction equation. Spread through diffusion supposes a random
character of mobility. Future prospectives include the possibility of characterizing
the movement of bacteria by using chemotactically-driven mobility.

As an example of a target problem, consider latent anoxic bacteria, present in
the bulk, diffusing into the biofilm and growing in the inner layer of biofilm where
the oxygen concentration is equal to zero. In this particular case the anoxic
bacteria concentration in the bulk is non-zero, while the value of this species on
the free boundary is equal to zero. Notably, the growth process is hyperbolic and
the diffusion process of new or latent species parabolic. The two are mutually
connected but governed through different equations that are coupled by
introducing a growth rate term arising from mobile species concentrations in the
hyperbolic equations governing biofilm development and connected with
parabolic equations governing concentration diffusive processes. In this way the
model can take into account all colonizing cells of all bacterial species present in
the bulk liquid that diffuse within the biofilm and grow when environmental
conditions allow, thus selecting species that are best able to grow in the particular
conditions of any specific microenvironment in the biofilm. The model is quite
general and can handle any number of species, included the colonizing and latent
species, and any number of substrates. Growth processes are governed by a
system of nonlinear hyperbolic partial differential equations and concentration
diffusive processes by parabolic partial differential equations. Substrate trends are
governed by a system of semi-linear parabolic partial differential equations. All
equations are mutually connected and lead to a free boundary value problem,
presented in Sec. 6.2. Also, the generalization to 3D is briefly described. Some
qualitative properties of solutions are proved, mainly to show the consistency of
the model, in Sec. 6.3. Numerical solutions are based on the method of
characteristics and the accuracy was checked by comparison to the equation∑n

i=1 fi(z, t) = 1, which states that the sum of volume fractions gives one. In
Sec. 6.4 the model is applied to a well-known biological process of heterotrophic
and autotrophic bacteria competition. The results confirm the capability of the
model to predict biomass distribution, substrate concentration trends over biofilm
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depth, and formation of new bacterial species.

6.2 Invasion model

6.2.1 Equations for biofilms

Consider multispecies biofilm growth in one space dimension. Denote by z the
biofilm growth direction, assumed perpendicular to a substratum located at z = 0.
The dynamics are governed by the equations

∂Xi

∂t
+

∂

∂z
(uXi) = ρirM,i(z, t,X,S) + ρiri(z, t,ψ,S), (6.1)

i = 1, ..., n, 0 ≤ z ≤ L(t), t > 0,

∂u

∂z
=

n∑
i=1

(rM,i + ri), 0 < z ≤ L(t), t > 0, (6.2)

∂ψi
∂t

−
∂

∂z

(
DM,i

∂ψi
∂z

)
= rψ,i(z, t,ψ,X,S), (6.3)

i = 1, ..., n, 0 < z < L(t), t > 0,

L̇(t) = u(L(t), t) + σa(t)− σd(L(t), t), t > 0, (6.4)

where:
Xi(z, t) = ρifi denotes the concentration of microorganism i, X = (X1, ..., Xn);
fi(z, t) is the volume fraction of microbial species i; hence

∑n
i=1 fi = 1;

ρi denotes constant density;
Sj(z, t) denotes the concentration of substrate j, j = 1, ...,m, S = (S1, ..., Sm);
u(z, t) is the velocity of the microbial mass;
rM,i(z, t,X,S) is the specific growth rate;
ψi(z, t) concentration of planktonic species diffusing from bulk liquid to biofilm;
ψ = (ψ1, ..., ψn);
ri(z, t,ψ,S) is the specific growth rate due to planktonic species;
rψ,i(z, t,ψ,X,S) is the conversion rate of motile species;
L(t) denotes biofilm thickness, free boundary;
DM,i denotes the diffusivity coefficient of planktonic species;
σa(t) is the attachment biomass flux from bulk liquid to biofilm;
σd(L(t), t) is the detachment biomass flux from biofilm to bulk liquid.

Equations (6.1) follow from the mass balance for a generic control volume;
though the term ri is new, these equations have formed the core of many biofilm
models. The functions ri(z, t,ψ,S) denote specific growth rates due to planktonic
species and derives from the diffusion of colonizing bacterial species from the
bulk liquid. Equations (6.2) follow from

∑n
i=1 fi = 1. Note that it is assumed
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that the volume fractions occupied by planktonic species are negligible. Equations
(6.3) are newly introduced here. They govern diffusion of bacterial cells through
channels and pores and within biofilms. The functions rψ,i(z, t,ψ,S) represent
the loss due to the conversion of motile bacteria to non-motile state as well as gain
from biofilm cells becoming planktonic. We do not include the latter effect here as
it is likely not important for invasion of new species, and so will suppress the X

dependence below. Note that if there is in fact conversion of biofilm to planktonic
cells, there would be an accompanying sink in (6.1) though that term would likely
be small. Finally, free boundary equation (6.4) follows from global mass balance
and includes attachment and detachment terms.

Suitable initial-boundary conditions are associated to equations (6.1)-(6.4).
Some of them are immediate; for example, no flux conditions on substratum
imply

u(0, t) = 0,
∂ψi
∂z

(0, t) = 0, t > 0. (6.5)

Some others are constrained, since the initial concentration of colonizing species
must be assigned to be identically zero. Designating the new bacterial species by
indexes i = n1 + 1, ..., n, the initial conditions for Xi are

Xi(z, 0) =

{
ϕi(z), i = 1, ..., n1,
ϕi(z) = 0, i = n1 + 1, ..., n.

0 ≤ z ≤ L(t), (6.6)

For equations (6.3), we assume that the invading biological process starts at t = 0
and so the initial-boundary conditions

ψi(z, 0) = ψi0(z) = 0, 0 ≤ z ≤ L(0), (6.7)

ψi(L(t), t) = ψiL(t), t > 0, (6.8)

are added to (6.5)2, where the quite general functions ψiL(t) represent the
concentrations of the new species in the bulk liquid. Also, about the possible
connection between dispersal and water channels, we note that this is a layer of
complexity beyond the current model. Finally, the initial biofilm thickness is
prescribed for equation (6.4)

L(0) = L0. (6.9)

Remark 2.1 Equation (6.3) could be considered with different initial-boundary
conditions depending on context. For example,

ψi(z, 0) = 0, 0 ≤ z ≤ L0,
∂ψi
∂z

(0, t) = 0,
∂ψi
∂z

(L(t), t) = ψiL(t), t > 0,

describe inoculation flux of a new species.

Remark 2.2 Explicitly note that no boundary conditions for X and its derivatives
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have been assigned on the free boundary z = L(t).

6.2.2 Equations for substrates

Substrate profiles are governed by the following equations

∂Sj
∂t

−
∂

∂z

(
Dj

∂Sj
∂z

)
= rS,j(z, t,X,S), 0 < z < L(t), t > 0, (6.10)

where j = 1, ...,m, rS,j(z, t,X,S) is the conversion rate of substrate j, and DS,j

denotes the diffusivity coefficient of substrate j, with initial conditions

Sj(z, 0) = Sj0(z), 0 ≤ z ≤ L0, j = 1, ...,m. (6.11)

No substrate flux is assumed at the substratum boundary z = 0, i.e.,

∂Sj
∂z

(0, t) = 0, t > 0, j = 1, ...,m. (6.12)

On the free boundary z = L(t), Dirichlet conditions

Sj(L(t), t) = SjL(t), t > 0, j = 1, ...,m, (6.13)

or Neumann conditions

∂Sj
∂z

(L(t), t) = SjL(t), t > 0, j = 1, ...,m, (6.14)

or mixed condition, depending on the problem, can be prescribed.

6.2.3 3D Model

The 1D model presented in the previous sections can be generalized to 3D by
starting from the model described in [33]. Denote by Bt the 3D region occupied
by the biofilm and let x = (x1, x2, x3) be a generic point. Then, Xi = Xi(x, t),
fi = fi(x, t), Sj = Sj(x, t) , u = u(x, t), rM,i = rM,i(x, t,X,S), ψi = ψi(x, t),
ri = ri(x, t,ψ,S).

If u = ∇p, where p denotes the pressure within the biofilm, the equations
governing biofilm and substrate evolution are written as

∂Xi

∂t
+∇ · (Xi∇p) = ρirM,i(x, t,X,S) + ρiri(x, t,ψ,S), x ∈ Bt, (6.15)

∇2p =
n∑
i=1

(rM,i + ri), x ∈ Bt, (6.16)
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∂ψi
∂t

−DM,i∇
2ψi = rψ,i(x, t,ψ,S), x ∈ Bt, (6.17)

∂Sj
∂t

−Dj∇
2Sj = rS,j(z, t,X,S), x ∈ Bt. (6.18)

6.3 Qualitative properties of solutions

Consider the free boundary value problem described in Sections 6.2.1 and 6.2.2
and suppose that a uniqueness and existence theorem exists. Note, under suitable
assumptions and some modifications, such a result could be proved as in [230].
Let us show some simple properties of solutions to the new model in order to
emphasize its consistency and capability to predict the formation of new bacterial
species.

Property 3.1 Consider equations (6.1), rewritten for convenience,

∂Xi

∂t
+

∂

∂z
(uXi) = ρirM,i(z, t,X,S) + ρiri(z, t,ψ,S), 0 ≤ z ≤ L(t), t > 0,

(6.19)
where, now, i is a prefixed index. Suppose that

ϕi(z) = 0, rM,i|Xi=0 = 0, ri|ψi=0 = 0. (6.20)

Then equation (6.19) admits the unique solution Xi = 0. Therefore the new
species, indexed i, does not develop (ϕi = 0). Note that hypothesis (3.13)2 is
usually satisfied for microbial species. Thus the term ri is essential for
colonization to occur in the model.

Property 3.2 Consider equation (6.3), rewritten for convenience,

∂ψi
∂t

−
∂

∂z

(
DM,i

∂ψi
∂z

)
= rψ,i(z, t,ψ,S), 0 < z < L(t), t > 0, (6.21)

where i is the same index as in equation (6.19). Assume homogeneous initial-
boundary conditions

ψi(z, 0) = 0, 0 ≤ z ≤ L(0),
∂ψi
∂z

(0, t) = 0, ψi(L(t), t) = 0, t > 0. (6.22)

Then, equation (6.21) admits the unique solution ψi = 0. If a species is not present
in the bulk liquid, then it cannot diffuse into the biofilm and develop, as outlined
in Property 3.1. (Also recall that the model does not allow biofilm cells to become
planktonic, that is, rψ,i is independent of X.) Note further that hypothesis (3.13)3
provides an important constraint on term ri; as a consequence, even if the function
ψj �= 0 for another species j, j �= i, still species i is not affected.
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Consider now system (6.1) rewritten in terms of volume fraction

∂fi
∂t

+ u
∂fi
∂z

= rM,i + ri − fi
∂u

∂z
, i = 1, ..., n, 0 ≤ z ≤ L(t), t > 0. (6.23)

Introduce the characteristic-like lines z = z(z0, t) defined by

∂z

∂t
(z0, t) = u(z(z0, t), t), z(z0, 0) = z0, 0 ≤ z0 ≤ L0. (6.24)

Insert (6.24) in system (6.1) to obtain

ḟi = rM,i + ri − fi
∂u

∂z
, i = 1, ..., n, z = z(z0, t), 0 ≤ z0 ≤ L0, t > 0. (6.25)

Summing on i and using (6.2) results in

ḟ = (1− f)

n∑
i=1

(rM,i + ri), z = z(z0, t), 0 ≤ z0 ≤ L0, t > 0, (6.26)

where f =
∑n

i=1 fi. Since it is apparent that equation (6.26) admits the solution
f = 1 we can state the following property.

Property 3.3. Consider system (6.1) and assume that (6.2) holds. Then, under the
hypothesis f(z0, 0) = 1 we have f(z(z0, t), t) = 1, 0 ≤ z0 ≤ L0, t > 0.

6.4 Numerical solutions and applications

Numerical solutions to the free boundary problem stated in Section 3.2 have been
obtained by using the method of characteristics, e.g. [30, 57]. Accuracy was
checked by comparison to the equation

∑n
i=1 fi(z, t) = 1. The simulations in this

section have been performed by original software developed for the model
presented in this work. Heterotrophic-autotrophic competition for space with
oxygen as common substrate proposed in [23] is considered. This example is
based on mass balance equations for substrates, products, and bacterial groups
and includes the bio-chemical reactions of heterotrophic-autotrophic competition.
The model considers the kinetics of microbial growth and decay and takes into
account two groups of bacteria: heterotrophic bacteria (X1) and autotrophic
bacteria (X2), and three components (substrates): ammonia (S1), organic carbon
(S2) and oxygen (S3). Oxygen is used for both organic carbon oxidation and
nitrification. Oxidation of ammonia to nitrate by the autotrophs provides energy
for autotrophic growth. Inert material is modelled as another microbial species,
whose growth derives from the decay of heterotrophic and autotrophic biomass.
Organic carbon concentration is expressed in terms of Chemical Oxygen Demand
(COD) which represents a measure conventionally used in environmental
chemistry to characterize indirectly the amount of organic compounds. In this
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specific context COD measures the amount of molecular oxygen per unit of
material that would be needed to oxidize it to CO2 [205].

Parameter Unit Set 1 Set 2
COD Concentration mgl−1 3 3
Ammonia Concentration mgl−1 13 13
Oxygen Concentration mgl−1 8 8
Time Simulation d 10 10
Initial Biofilm thickness mm 0.3 0.3
kψ,1 d−1 0.002 0.002
kψ,2 d−1 0.002 0.002
Initial Volume Fraction of X1 – 0.0 1.0
Initial Volume Fraction of X2 – 1.0 0.0

Table 6.1: Operational parameters used for model simulations

The stoichiometry and process rates of the model including expressions for
rM,i and rS,j and the relevant parameter values come from [23]. The specific
growth rate via planktonic species is expressed as

ri = kcol,i
ψi

kψ,i + ψi

Si
kSi

+ Si

S3
kS3 + S3

, i = 1, 2, (6.27)

where kcol,i is the maximum colonization rate of motile species, kψ,i is the kinetic
constant for motile bacteria, and kSi

is the half-saturation constant for substrate Si.
The planktonic species loss term is expressed as

rψ,i = −
1

Yψ,i
ri = −

kcol,i
Yψ,i

ψi
kψ,i + ψi

Si
kSi

+ Si

S3
kS3 + S3

, i = 1, 2, (6.28)

where Yψ,i is the yield of non-motile bacteria on motile species.
Numerical simulations demonstrate the capability of the model to predict

biomass distribution, substrate concentration profiles over biofilm depth, and
invasion of new bacterial species. The results are shown in Figures 6.1-6.4 (note
that biofilm is growing from left to right). In particular, two sets of simulations
using different colonizing bacterial species have been performed: simulation set 1
illustrates the dynamics of heterotrophic colonization and simulation set 2
analyzes the time evolution of autotrophic colonization. The objective is the
evaluation of the effects of colonization of different bacterial species on biofilm
growth, bacterial species distribution and substrate concentration profiles.

The values of ammonia, COD, and oxygen concentrations at the biofilm/bulk
liquid interface used for model simulations are reported in Table 6.1.
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6.4.1 Simulation Set 1: Heterotrophic colonization

The first simulation monitors over time the heterotrophic colonization of a biofilm
initially constituted only by autotrophic bacteria. The initial biofilm thickness is
0.3 mm and the concentration of colonizing heterotrophic bacteria in the bulk liquid
has been set to ψ1(L(t), t) = 1mgCODl−1.

Figure 6.1: Effect of heterotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ1 profile within biofilm after 1 (A1,A2,A3) ,
2 (B1,B2,B3) , 3 (C1,C2,C3), 5 (D1,D2,D3) days.

In addition, ψ2(L(t), t) = 0. Simulation results are reported in Figures 6.1
and 6.2. In particular, the results are in terms of bacterial volume fractions Figures
6.1 (A1, B1, C1, D1), substrate concentration profiles Figures 6.1 (A2, B2, C2,
D2), and ψ1 profiles Figures 6.1 (A3, B3, C3, D3) within biofilm at 1, 2, 3, 5 days
simulation time and bacterial volume fractions Figures 6.1 (E1, F1, G1, H1),
substrate concentration profiles Figures 6.1 (E2, F2, G2, H2), and ψ1 profiles
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Figures 6.1 (E3, F3, G3, H3) within biofilm at 7.5, 10, 20, 30 days simulation
time respectively. The simulations show that colonizing bacteria diffuse into
biofilm and grow only where there are favorable environmental conditions for
their development, (Figures 6.1 (C1, D1) and Figures 6.2 (E1, F1, G1, H1)), as
determined by substrates trends (Figures 6.1 (A2 B2 C2 D2), Figures 6.2 (E2 F2
G2 H2)).

Figure 6.2: Effect of heterotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ1 profile within biofilm after 7.5 (E1,E2,E3)
, 10 (F1,F2,F3) , 20 (G1,G2,G3), 30 (H1,H2,H3) days.

Note that the introduction of mobile bacteria into the biofilm model allows
colonization by a new species as determined by substrate profiles. More precisely,
as shown in Figures 6.1 (A3, B3, C3, D3) and 6.1 (E3, F3, G3, H3), ψ1 never
reaches zero within biofilm, indicating that merely the contemporary presence of
substrates and colonizing motile species can lead to the growth of non-motile
bacteria. This fact is consistent with observations that substrate concentrations
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have a regulatory effect on the dynamics of biofilm structure since the colony size
can be directly correlated with the substrate concentration profiles in the biofilm.
Figures 6.1 (A1, B1, C1, D1) and 6.2 (E1, F1, G1, H1) show that heterotrophic
bacteria develop only in the outmost part of biofilm where oxygen and COD are
present. The higher growth rate of heterotrophic bacteria there allows the
suppression of autotrophs. When the external invasion takes place, (Figures 6.2
(E1, F1)), it is possible to note that the heterotrophic bacteria penetrate into
biofilm (Figures 6.2 (G1, H1)). The simulations were stopped at 30 days. By
going on with the simulations, it would be possible to see that heterotrophs
continue to penetrate into biofilm.

Figure 6.3: Effect of autotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ2 profile within biofilm after 1 (A1,A2,A3) ,
2 (B1,B2,B3) , 3 (C1,C2,C3), 5 (D1,D2,D3) days.

The diffused substrate concentration profiles, for eight different time
simulations, are shown in Figures 6.1 (A2, B2, C2, D2) and 6.2 (E2, F2, G2, H2).
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As it is reasonable to expect, the COD shows a constant profile when
heterotrophic bacteria are not present in biofilm, Figures 6.1 (A2, B2, C2). As
soon as heterotrophic bacteria start to growth within biofilm, the COD
concentration decreases, Figures 6.1 (D2) and 6.2 (E2, F2, G2, H2). In the
outmost part of biofilm where oxygen concentration is high (Figures 6.2 (E2, F2,
G2, H2)), according to experimental results [231, 232], ammonia and COD show
decreasing profiles.

6.4.2 Simulation Set 2: Autotrophic colonization

Complementing the previous set, simulation set 2 investigates the autotrophic
colonization of a biofilm constituted only by heterotrophic bacteria with an initial
thickness of 0.3 mm, Figures 6.3 and 6.4.

Figure 6.4: Effect of autotrophic colonization on bacterial volume fractions,
substrate concentration profiles, and ψ2 profile within biofilm after 7.5 (E1,E2,E3)
, 10 (F1,F2,F3) , 20 (G1,G2,G3), 30 (H1,H2,H3) days.
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A concentration of colonizing autotrophic bacteria in the bulk liquid equal to
ψ2(L(t), t) = 1mgCODl−1 has been considered. In addition, ψ1(L(t), t) = 0.
The new species develops only in the inner part of the biofilm where the
environmental conditions are favorable for autotrophs. See Figures 6.3 (A2, B2,
C2, D2) and 6.4 (E2, F2, G2, H2) for substrate concentration profiles within
biofilm at 1, 2, 3, 5 days simulation time and 7.5, 10, 20, 30 days simulation time
respectively.

It is evident that autotrophs develop in the inner part of the biofilm where
COD is not present (and thus the heterotrophs cannot grow) but where high levels
of ammonia are available. Figures 6.3 (A1, B1, C1, D1) and 6.4 (E1, F1, G1, H1)
show the biofilm structure in terms of bacterial volume fractions at different
simulation times: 1, 2, 3, 5, 7.5, 10, 20, 30 days. After 7.5, 10 and 20 days,
Figures 6.4 (E1, F1, G1), the biofilm is characterized by a typical
heterotrophs-autotrophs stratification: autotrophs are dominant in the innermost
part of biofilm and heterotrophs develop at the outmost layers [231]. The selected
boundary conditions, in particular the high ammonia concentration determine the
strong autotrophic development, thus the biomass distribution in Figures 6.4 (H1),
in confirmation of the consistency of the proposed model.

6.5 Conclusions

A mathematical model describing the invasion of new bacterial species into an
already constituted biofilm has been presented, motivated by the importance of
invasion of mobile, diffusing organisms. The biological process of microbial
invasion is likely a frequent one in biofilms and can be viewed in the context of
ecological succession or simply as a consequence of life in a fluctuating
environment. Invasion may be an important event; even beyond the ability of a
new species simply to establish itself in an already present community, synergistic
interactions could arise between colonizing and resident species resulting in
cooperative fitness benefits. In other cases the invasion of a new species may lead
to the loss of resident species, contributing to a decrease in ecological richness.
Depending on context, either of these might be desirable or undesirable - consider
for example introduction of pathogens or probiotics to the gut microbiome.

Understanding the mechanisms that govern invasion is important in order to
clarify community functions. This work represents a new approach for modelling
the colonization process while using a continuum model based on hyperbolic
equations. Qualitative properties of solutions showed the consistency of the
model. A simple well-known example has been studied using numerical
simulations developed by the method of characteristics. The results show that the
model is able to predict the colonizing process in a reasonable way. A next step
might be the application of the model to instances of multispecies biofilms in
which resident species benefit from metabolic commensalism and an invading
species might interfere, either positively or negatively.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Biofilm models have been recognized as useful tools for studying and exploring
fundamental processes of such a complex system on a wide range of temporal and
spatial scales as well as elucidating microbial competition and coexistence.
Biofilm models are characterized by different levels of complexity:
one-dimensional models assume the biofilm as planar; multidimensional models
are able to describe the spatial heterogeneity of biofilm structure in multiple
directions allowing us to capture most of the features of a biofilm system.

In Chapter 2, the different modeling approaches present in literature have been
extensively analyzed with the aim of highlighting the main advantages and
disadvantages characterizing each approach. In particular, biofilm models have
been classified in two main categories, namely the continuum and discrete
models; for each class of models the required inputs, the outputs and the approach
used to simulate the main biofilm processes/features have been summarized.
Based on these elements and the results achieved by comparative studies
[233, 234, 235], general guidelines have been outlined in order to provide support
to the selection of the most suitable modeling approach. Multidimensional models
are characterized by high requirements in terms of input data, computational
resource and mathematical skills of the user; their use has been exclusively
confined to research while their application as engineering tools has been mostly
limited by the high spatial resolution and the level of detail required for model
calibration. Besides, multidimensional models usually describe local biofilm
development and result not feasible for large scale applications, such as the
reactor scale in the case of wastewater treatment. Despite the limitation for their
dimensionality, one-dimensional models are characterized by a good
results-to-effort-ratio and are often recommended for practical use [11]. In
addition, one-dimensional models, as well as all continuum models, are suitable
for mathematical analysis and generate deterministic solutions. However, on the
basis of the elucidations furnished in Chapter 2, they should not be pointed out
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merely as simplified mathematical descriptions of biofilm growth, since modeling
of bacterial biofilms, even in the one-dimensional case, lead to complex mixed
hyperbolic-parabolic free boundary value problems, not easily accessible to
qualitative analysis techniques. For this reason, they have been normally solved
numerically by using custom made softwares.

In Chapter 3, a qualitative analysis of the solutions to the free boundary value
problem governing bacterial population dynamics during the attachment
phenomenon in the initial phase of biofilm formation has been provided. The
exchange of particulate species between biofilm and bulk liquid, namely the
attachment and detachment process, plays a crucial role in biofilm technology as
it contributes to defining the microbial ecology of biofilm ecosystems. The
discussion has been addressed to the case of an already constituted thin layer of
biofilm, whose initial thickness is assumed to be strictly positive. The partial
differential equations constituting the free boundary value problem have been
converted into relatively simple ordinary differential equations. The key of this
transformation relies on the introduction of the characteristic-like lines. The
obtained ODE-type biofilm model has been converted into the equivalent integral
form, incorporating the initial conditions. Properties of the solutions have been
investigated: by using the fixed-point theorem, their existence and uniqueness
have been proved. These results demonstrate that the method of characteristics
may be used to obtain a qualitative insight into dynamic biofilm processes which
so far have been studied primarily numerically. Besides, such a method has been
used to integrate numerically the differential system with the aim of investigating
the effects of attachment rate on biofilm performance. The method of
characteristics has been recognized as a valid alternative to the commonly known
coordinate transformation method introduced by Wanner and Gujer [23] and
applied to the free boundary value problem in order to fix the size of the domain
in the 1D set-up. Actually, the method of characteristics may be applied even to
the case of initial biofilm formation, while the coordinate transformation is not
possible as the biofilm initial length needs to be set to zero.

In the further chapters, the transformed simpler to handle ODE-type biofilm
model has been used to study with numerical techniques population dynamics in
specific multispecies biofilms which experience microbial coexistence and/or
competition. For what concerns the exchange with the bulk liquid, only
detachment has been taken into account as it represents the prevailing transfer
process for a mature biofilm. The accuracy of the numerical integration has been
checked by testing the invariance of the mass conservation evaluated for the
whole system. Microbial interactions within multispecies biofilms can be
classified in antagonistic, such as competition over nutrients and growth
inhibition, or synergistic. Synergistic interactions among different species usually
predominate over antagonistic ones, revealing in many cases in metabolic
cooperation with one species utilizing the metabolite produced by a neighboring
species [4]. This phenomenon is usually defined as metabolic commensalism and
allows the coexistence of different microbial groups through niche differentiation.
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The inherent synergical interactions characterizing natural biofilm communities
have shown to facilitate the simultaneous removal of various pollutants in
wastewater treatment reactors. In several biofilm-based processes, redox
stratification is experienced due to the formation of strong concentration gradients
of both electron donors and acceptors, and the accumulation of metabolic waste
products, that can be used as growth substrates by other microorganisms. On the
other hand, microbial population may experience antagonistic interactions,
reflecting on the overall efficiency of the wastewater treatment process. A striking
example is provided by the reduction of sulphate removal efficiencies in
sulfidogenic reactors, treating acidic sulfate-containing wastewater, mainly due to
the accumulation of acetate and the presence of different species competing for a
common substrate. Based on these considerations, in Chapter 4 the dynamical
response of a multispecies biofilm performing a sulfidogenic process at different
COD/SO2−

4 ratios has been investigated. The bacterial community has been
supposed to be constituted by sulfate-reducing bacteria, acetogens and
methanogens; the reactor is simulated to be fed with a mixture of sulfate, acting as
the electron acceptor and lactate as electron donor. The simulation results have
found confirmation in experimental research. COD/sulfate ratio has been
recognized as a crucial variable in the optimization of lactate utilization via
oxidation in preference to fermentation and in the maximization of the efficiency
of biological sulfate reduction. The model could be further used to understand
how the operational conditions can affect biofilm growth and microbial
competition, recommend start-up and feeding strategies as well as provide
insights regarding biofilm reactor configurations. Microbial interactions in
multispecies biofilms also play a crucial role in the case of the ANaerobic
AMMonia OXidation (Anammox) process, which represents one of the most
promising innovative techniques for the biological removal of nitrogen from
wastewater. In Chapter 5, the one-dimensional mathematical model has been
applied to analyse and predict microbial interactions within multispecies biofilms
including Anammox pathway. Based on the results achieved in previous models,
the related processes of organic carbon oxidation, denitrification, nitrification and
Anammox have been combined in order to evaluate the influence of bulk substrate
concentrations and diffusion on microbial stratification. Specific scenarios have
been analyzed: first the effect of different bulk liquid oxygen concentration on
microbial population stratification has been assessed; second, the model response
to a variation of operational parameters (dissolved oxygen level and shear stress
condition) has been investigated. The results reveal that in a thick multispecies
biofilm, including heterotrophic, aerobic autotrophic nitrifying and Anammox
bacteria, oxygen diffusion limitation determines the formation of both aerobic and
anoxic microenvironments favouring interspecies competition. In contrast,
oxygen excess causes a disturbance on microbial interactions leading to
Anammox bacteria loss. Moreover, it is evident that biofilm erosion, which is
mainly dictated by the specific reactor hydrodynamics, provides a contributory
effect to the loss of Anammox bacteria as it exposes them to higher oxygen
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concentrations internally. The combined effect of lower shear stress and oxygen
may be seen as a possible operating strategy to facilitate the coexistence of the
different microbial groups. Nevertheless, some assumptions made in modeling
this complex biological system may lead to an oversimplified representation of
inert mass production and exchange of microbial products. Indeed, the
incorporation of microbial by-products and EPS formation, kinetics expression of
heterotrophic growth on hydrolysis by-products may pave for a more accurate
modeling of Anammox process in order to effectively control the performance of
Anammox systems regarding effluent quality and process dynamics.

In Chapter 6, a new modeling approach to simulate bacterial species
colonization of a constituted multispecies biofilm has been presented. The model
includes all the main biofilm processes, such as substrate diffusion, attachment,
detachment, microbial growth, biomass spreading, but it is mainly focused on the
description of new species invasion and transport from bulk liquid to biofilm (or
vice-versa). The model has been conceived in the framework of continuum
models with the intention of providing a modeling alternative to the widely used
Wanner-Recheirt model [47] for the specifically colonization of new species
diffusing from bulk liquid to biofilm. The basic idea constists in coupling the
diffusion of colonizing species with the main biofilm development by introducing
a growth rate term which depends on the concentration of motile species. This
expedient has allowed us to keep the growth process hyperbolic with no need of
special boundary conditions for the growth of microbial species within the
biofilm. The resulting model is constituted by a system of non linear hyperbolic
partial differential equations, a system of semi-linear parabolic equations
governing substrate diffusive processes and a system of diffusion-reaction
equations for simulating the spread of motile bacteria within biofilm matrix. The
models is amenable to qualitative analysis and some properties on the consistency
of solutions have been shown. By using the method of characteristics, the model
has been solved in numerical form and addressed to study the colonization of
heterotrophic-autotrophic biofilm. The latter represents only one of the possible
applications as microbial invasion represents a likely frequently biological process
in biofilms.

7.2 Future directions

One-dimensional biofilm models are considered to be a valuable tool in biofilm
process research. They can address the qualitative and/or quantitative analysis and
constitute a foundation and a framework within which further modifications and
developments can be made [11]. In this context, mathematical modeling can be
used to solidify existing or derive new models, and to analyze and explain their
behaviour. Based on the results achieved in this study, biofilm research areas which
may benefit from further progress can be individuated. They are briefly presented
in the following sections.



Chapter 7. Conclusion and Future Work 127

Invasion of new species

The invasion of colonizing species into a constituted biofilm represents a frequent
biological process in multispecies biofilms. The consequences of the
establishment of new species in a pre-existing microbial community are varied:
the resident microbial species could benefit from synergistic interactions with the
invading species, the first producing metabolites which inhibit their metabolism at
high concentration, the second growing on such products. This results in an
increased ecological richness and in a cooperative fitness. Not all the interactions
established between resident and colonizing species have a positive feedback: the
invasion may lead to the loss of resident species contributing to a decrease in
microbial diversity. The mechanisms governing this biological process are poorly
understood: the invading species may be driven by a random movement within the
biofilm or a more complex chemotactic approach may be used. An extension of
the study to the case of chemotactic movement of motile bacteria within the
porous structure of biofilms would be desirable. To the best of our knowledge, the
movement of motile species driven by chemotaxis has never been included in a
biofilm model but most of the literature studies address the case of planktonic
bacterial state. Furthermore, the invasion model could be combined with the
modelling of the initial phase of biofilm formation.

Effect of sloughing events and volumetric detachment on microbial
composition

In Chapter 5, the effect of continuous detachment, modeled as a function of
biofilm thickness, on microbial population dynamics in multispecies biofilms
including Anammox pathway has been investigated. However, not only erosion
but also single sloughing events and volumetric detachment may influence the
results. Morgenroth and Wilderer [236] have shown in the case of
autotrophic/heterotrophic biofilm that detachment has a significant impact on
competition and structure of the microbial population. Therefore, a natural
extension of the developed model for simulating Anammox competition would be
to implement different detachment mechanisms instead of simply considering the
erosion performed by liquid flow.

Calibration and sensitivity analysis

For adequately representing experimental data with a mathematical model,
calibration of the model to collected data is inevitable and required to effectively
use biofilm models in engineering design [237]. The biofilm reactor model
calibration process represents a "hot" topic in biofilm research: efforts to define
the type of information that is required to calibrate a biofilm reactor model,
sampling and tests procedures are limited [25]. Actually, only few studies are
dedicated to the definition of a specific calibration protocol. This lack may be
related to the availability of widely range of significantly different biofilm
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modeling approaches, various empirical mass transfer boundary layer
formulations, and host of system-specific model parameters. In future, more
efforts are planned to be dedicated to the development of a calibration algorithm
and a specific sensitivity analysis approach.
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