

POLITECNICO DI MILANO

DIIAR - Environmental Engineering Section

HETEROGENEOUS ELECTROPHOTOCATALYSIS ON NANOSTRUCTURED TIO₂ FOR REFRACTORY POLLUTANTS AND RESISTANT PATHOGENS REMOVAL FROM WATER AND WASTEWATER

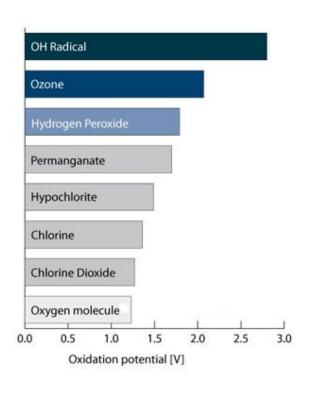
SIDISA Summer School 25 june 2012 PhD student ANDREA TUROLLA
PhD advisor MANUELA ANTONELLI

INDEX

PROCESS FUNDAMENTALS

AIM OF THE PROJECT AND RESEARCH PLAN

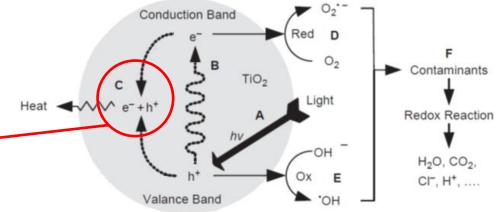
MECHANISTIC PHENOMENA INSIGHT:
RADICAL SPECIES MEASUREMENT


OPTIMIZATION AND DEVELOPMENTS:
PHOTOELECTROCHEMICAL TESTS, CFD SIMULATIONS

APPLICATION TO WATER AND WASTEWATER TREATMENT:

ORGANICS REMOVAL AND ECOTOXICITY

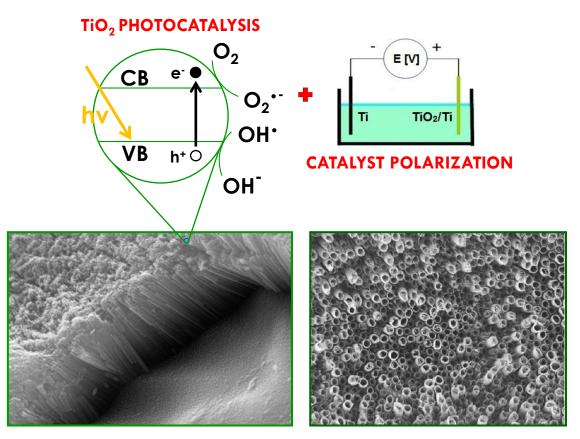
PROCESS FUNDAMENTALS: TiO₂ PHOTOCATALYSIS



ELECTRON-HOLE PAIRS

RECOMBINATION:
MAIN PROCESS

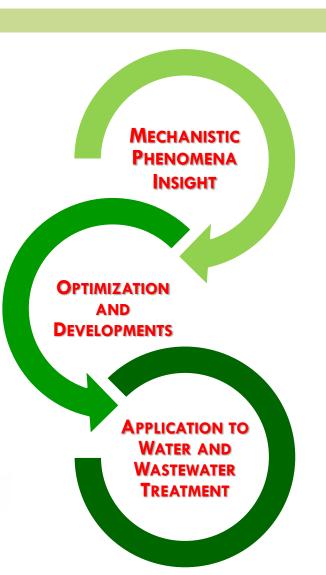
DRAWBACK


- ADVANCED OXIDATION PROCESS (AOP)
- SEMICONDUCTOR BAND GAP: 3.2 EV
 → UV RADIATION (λ<380 NM)
- REACTIVE OXYGEN SPECIES (ROS)
 - → HYDROXYL RADICAL (OH.)
 - \rightarrow SUPEROXIDE RADICAL (O_2 .)
- DEGRADATION OF POLLUTANTS INTO LOWER MOLECULAR WEIGHT INTERMEDIATES
 AND MICRORGANISMS STRUCTURE DAMAGING

PROCESS FUNDAMENTALS: ELECTROPHOTOCATALYSIS ON NANO TiO₂

THE PROCESS INTEGRATES PHOTOCATALYTIC DEGRADATION ON NANOTUBULAR TiO₂ AND ELECTROCHEMICAL POLARIZATION

- NO OXIDANTS ARE REQUIRED TO GENERATE RADICALS
- THE CATALYST IS NOT A DISPERSED POWDER BUT IT IS DIRECTLY GROWN ON Ti SUPPORT (WIRE MESH) BY ANODIC OXIDATION
- A LIGHT POLARIZATION IS APPLIED TO THE TiO₂/Ti PHOTOANODE TO MINIMISE THE RECOMBINATION OF ELECTRON/HOLE PAIRS
- DISSOLVED OXYGEN IS REQUIRED


NANOTUBULAR SELF-ORGANIZED TiO2/Ti

AIM OF THE PROJECT AND RESEARCH PLAN

- PROCESS OPTIMIZATION:
 PHOTOELECTROCHEMICAL
 ASSESSMENT
- CFD SIMULATIONS
- REACTOR DESIGN
- LIFE CYCLE ANALYSIS

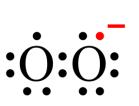
- IRRADIATION PHENOMENA
- TiO₂/Ti PHOTOACTIVATION
- RADICAL SPECIES GENERATION
- ADSORPTION AND DEGRADATION KINETICS

- ORGANICS REMOVAL
- BY-PRODUCTS AND ECOTOXICITY
- ADVANCED DISINFECTION (RESISTANT PATHOGENS)
- P BENCHMARK TESTS $(O_{3}, H_2O_2/UV)$

MECHANISTIC PHENOMENA INSIGHT: RADICAL SPECIES MEASUREMENTS

SHORT LIFETIMES: 10⁻⁹ SECONDS

• LOW CONCENTRATIONS: 10-9 ÷ 10-11 MOL/L


HIGH REACTIVITY: 2.80 V

DIFFICULT DIRECT
MEASUREMENT

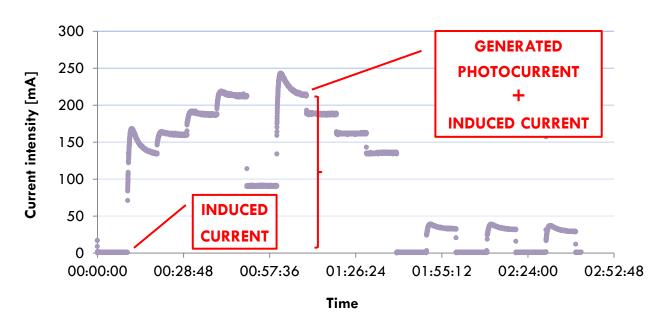
PROBE MOLECULES

SPECIFIC CHEMICALS THAT REACT SELECTIVELY WITH REACTIVE OXYGEN SPECIES GENERATING PRODUCTS THAT CAN BE MEASURED

DETECTOR (SPECTROMETRIC METHOD): XTT

SUPEROXIDE (O₂*-)

QUENCHER: SUPEROXIDE DISMUTASE (SOD)


OPTIMIZATION AND DEVELOPMENTS: PHOTOELECTROCHEMICAL TESTS

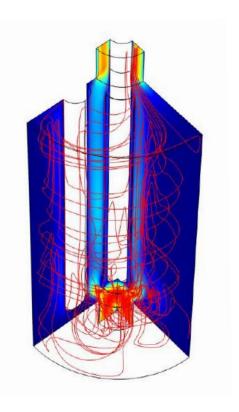
EXPERIMENTAL SETUP ALLOWS GENERATED PHOTOCURRENT MONITORING: <u>TiO₂/Ti PHOTOACTIVATION INDEX</u>

GENERATED PHOTOCURRENT = TOTAL CURRENT - INDUCED CURRENT

HIGHER VALUES OF PHOTOCURRENT = BETTER CATALYST PHOTOACTIVATION

OPERATING PARAMETERS INFLUENCE ASSESSMENT: PROCESS OPTIMIZATION

OPTIMIZATION AND DEVELOPMENTS: CFD SIMULATIONS

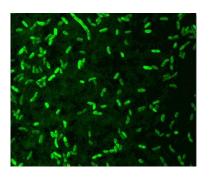


NON-IDEAL REACTOR
HYDRAULIC BEHAVIOR

NON-OPTIMIZED PROCESS YIELDS

COMPUTATIONAL FLUID DYNAMIC
FOR MODELING AND SIMULATION
(FINITE ELEMENT SOFTWARE)

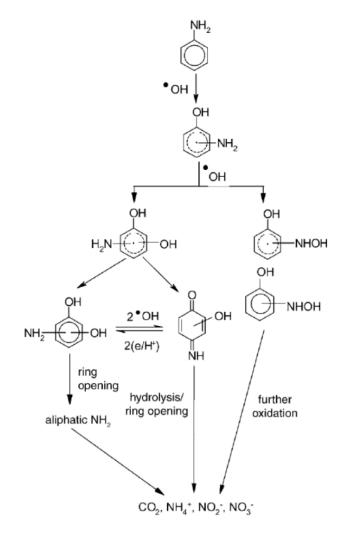
APPLICATION TO WATER AND WASTEWATER TREATMENT: ORGANICS REMOVAL AND ECOTOXICITY


WATER AND WASTEWATER CHARACTERISTICS:

OPTICAL PROPERTIES

(TRANSMITTANCE, SUSPENDED SOLIDS)

• CATALYST POISONING OR COVERING COMPOUNDS
(OILS, METALS)


TARGET POLLUTANTS REMOVAL VS. OXIDATION BY-PRODUCTS → BIOLOGICAL AGGREGATE INDECES (MICRO-BIOASSAYS)

VIBRIO FISCHERI

DAPHNIA MAGNA

POLITECNICO DI MILANO

DIIAR - Environmental Engineering Section

HETEROGENEOUS ELECTROPHOTOCATALYSIS
ON NANOSTRUCTURED TiO₂ FOR REFRACTORY
POLLUTANTS AND RESISTANT PATHOGENS
REMOVAL FROM WATER AND WASTEWATER

THANK YOU